Many people know that the University of Melbourne is ranked number one in Australia, but you may not know why.

We are one of the world’s finest universities. Employers worldwide seek out our graduates.

Our students succeed at the highest levels and go on to be leaders in their fields.

Our degrees aren’t like most others you will find in Australia, but they are similar to those offered by many top institutions worldwide. We call it the Melbourne Model.

You’ll start with one of our undergraduate degrees. You can then choose to join the workforce, or specialise at graduate level – gaining a combination of undergraduate and graduate qualifications that will help you stand out from the crowd.

We want you to create your own unique Melbourne experience, with the power to choose your direction and keep exploring new options. This is important in a world where careers are changing fast and employers value independent thinking.

You’ll have opportunities to study at partner institutions around the world, access our partnership networks and connect with brilliant minds who can offer you new perspectives. As a Melbourne Science student, you might intern at a professional services firm like Accenture, use a semester-long research project to delve into a topic that fascinates you, and attend the Industry and Career Seminar Series – where you’ll hear from science professionals working at organisations such as IBM, PwC and the Environment Protection Authority.

The University of Melbourne offers learning that stimulates, challenges and fulfils the potential of excellent students from around the globe, leading to personal development, meaningful careers and profound contributions to society.

That’s why some of the world’s most ambitious minds choose Melbourne.
Look at the world around you. Do you see something that could be better? Maybe it’s the cracked glass on your phone, the traffic jam on the Monash Freeway, a cure for motor neurone disease, or the missing ‘theory of everything’.

It’s only when you understand how something works that you can hope to improve it, and science gives you the tools to work out what’s really going on. Be a leader of tomorrow and tackle the world’s greatest challenges with science.

IT’S FUTURE-PROOF
In the next decade, an estimated 75 per cent of jobs in the fastest-growing industries will need skills in science, technology, engineering, mathematics and medicine (STEMM). Also, STEMM graduates are more likely to be in a high-income bracket.

IT’S MEANINGFUL
When you graduate, you’ll be ready to make a difference in society just like our researchers, who are tackling some of our planet’s biggest challenges. Some examples:

• Growing greener cities with plant-based roofs on buildings to increase human productivity, prevent urban flooding, create energy savings and reduce inner-city temperatures
• Developing iron and zinc biofortified rice that could change the lives of the billions of people who obtain most of their calories from rice
• Building tools that will enable doctors to identify babies at high risk of stillbirth while still in the womb.

From the Science degree, you could start exploring the big questions through graduate research alongside one of our stellar teams. You can also take your new skills into industry, government or the not-for-profit sector.

IT’S DIVERSE
A Science degree is a sure fire way to kick-start a career in research and development, health, engineering, information technology or education, just to name a few. If you want a job in an emerging industry – maybe one that hasn’t even been thought of yet – science is for you.

FIRST-CLASS FACILITIES
As a Science student at Melbourne, you’ll learn in our brand new $100 million life sciences building – the most sophisticated of its kind in Australia.

The 6-star Green Star rated building produces 50 per cent less greenhouse gas emissions than similar buildings of its size. It includes rainwater harvesting and re-use, high efficiency fittings and fixtures and a solar power system producing 140,000 kWh of solar energy a year.

You will also have access to the University’s Bio21 Molecular Science and Biotechnology Institute, one of the largest biotechnology research centres in Australia.

WHY CHOOSE SCIENCE?

The Bachelor of Science is a great first step towards your dream career. During your three years of study, you will have multiple opportunities to engage with industry and explore career paths that suit your skills and interests.

WHERE CAN A BACHELOR OF SCIENCE TAKE YOU?

The Bachelor of Science will equip you with all the skills and expertise you need to work across all sectors of science and beyond. Many of our graduates work, study and collaborate with professionals on a global level.

University of Melbourne researchers work with laboratories and institutes around the world – including the US, Germany, Japan, the UK and China, to name a few.

Our students go on to work in areas including science, medicine and health, veterinary medicine, commerce, engineering, law and education, alongside colleagues from a wide range of industries. Some of our recent graduates are employed at:

- Accenture Australia
- Amazon
- Apple
- Arup
- Baker Heart and Diabetes Institute
- BHP Billiton
- Bureau of Meteorology
- Burnet Institute
- Commonwealth Bank
- Deloitte
- Golder Associates
- Google
- IBM
- IMC Pacific
- Melbourne Water
- Murdoch Children’s Research Institute
- Optiver
- Palantir
- PwC
- Teach for Australia
- Walter and Eliza Hall Institute (WEHI)
- Zoos Victoria.

CAREER SUPPORT WHILE YOU STUDY

We know that you’re dreaming of a great career at the end of your degree. That’s why we continuously review and update our course and subject offerings to future-proof your studies and give you an edge in the jobs market. The skills you need are built into the course, which is why recruiters for big companies across Australia choose to employ our students year after year. See page 21 for details of our internships, our free Job Ready course and our popular Industry and Career Seminar Series.

HAVE YOU THOUGHT ABOUT THESE CAREERS?

CONSERVATION BIOLOGY

There’s still hope to save Australia’s critically endangered species such as the orange-bellied parrot, Leadbeater’s possum and the corroboree frog — if people like you join the fight.

RENEWABLES

We’re fast heading into the age of renewable energy. Your chemistry know-how will set you up to make major contributions to a field that is already worth more than $1 trillion, and still growing at an exponential rate.

INTERNATIONAL AID

Aid organisations need a thorough understanding of the people, culture and landscape of disaster-affected communities to be able to provide effective aid in a timely manner. Climate change is exacerbating the occurrence of natural disasters like famines, droughts, hurricanes and flooding. Understanding the risks to vulnerable communities and the importance of cultural connection will assist them in becoming more resilient and resistant to threat.

CYBER SECURITY

The US Presidential election, Sony, iCloud, Yahoo! – it seems not a day goes by when we’re not talking about the latest hacking scandal. How vulnerable are the online systems we use to buy groceries or movie tickets, or those that store our health or financial information? In many cases, it seems like the answer is: very. Interested? Think about becoming a ‘white hat’ hacker, and help organisations find and repair vulnerabilities in their online systems.

BANKING

What is the optimal credit card limit for any particular person? If it’s too high, it costs the bank to hold the extra money in reserve. Too little, and it costs the bank in lost interest charges (which are always passed on to the consumer, of course). There’s a mathematical solution: a model that analyses a person’s purchasing and payment behaviour to tailor the best line of credit.

SPACE EXPLORATION

Physicists and engineers at the University of Melbourne are designing and building the SkyHopper, a small, agile satellite that will look for evidence of undiscovered planets and the earliest galaxies in the universe. As a physics or engineering student, you could intern on this project on your way to a career in astrophysics or mechatronics.
Science at Melbourne maintains the highest standards and quality of teaching and research in Australia, attracting the best calibre of students. The course is truly yours to customise. You’ll be able to pick from 41 major areas of study – some you may never have even heard of before. One thing’s for sure: you’ll definitely find your passion!

COURSE STRUCTURE

The Bachelor of Science is a three-year degree in which you will complete 24 subjects (300 points of study in total). Most students complete eight subjects (100 points of study) in each year of full-time study.

SCIENCE MAJORS

A major is a sequence of subjects you complete throughout your degree. Completing a major indicates that you are a specialist in that particular discipline.

If you already know the area you would like to specialise in, you can start focusing on your major right away. Or, if you have interests in many areas of science, technology, engineering and maths, you can leave your options open during your first year while you explore.

Learn more about the 41 majors available in the Bachelor of Science on pages 10–19.

BREADTH SUBJECTS

Breadth is a unique feature of the Melbourne Model. It gives you the chance to explore subjects outside the Faculty of Science, developing new perspectives and learning to collaborate with others who have different strengths and interests – just as you will in your future career. Use breadth to explore creative pursuits or topics you have always been curious about, or use it to improve your career prospects by complementing your major with a language, communication skills or business expertise. ‘Breadth tracks’ (groups of breadth subjects taken throughout your degree) may even qualify you for graduate study in a field that’s very different from your major.

HONOURS

Honours is an optional fourth year of study, available in certain disciplines, that gives you the opportunity to draw together your previous studies and focus on an exciting piece of original research. Honours can prepare you for employment or a graduate research degree, such as a PhD.

BACHELOR OF SCIENCE (EXTENDED)

The Bachelor of Science (Extended) is a four-year degree that provides a pathway for Indigenous students to embark on careers that build on a strong science background.

As a Science student, you will have access to the full range of enrichment opportunities available at Melbourne – including study abroad and exchange; scholarships, awards and prizes; volunteering and leadership programs; and career-focused opportunities such as internships and networking – bolstered by additional support and resources to provide a strong foundation for success in science.

YOUR NEXT STEPS: WORK OR GRADUATE STUDY

After you finish your Science degree, you can choose to join the workforce or go on to study at graduate level. See pages 22–23 to find out where your degree could lead.
BACHELOR OF SCIENCE

DURATION
3 years full time
Part time available (domestic students only)

CAMPUS
Parkville

ENTRY
February (Semester 1) or July (Semester 2)

DOMESTIC STUDENTS
Minimum entry 2020:
ATAR 85.00, IB 31
Alternative entry: See Access Melbourne, page 33

INTERNATIONAL STUDENTS
International applicants will need to meet the academic admission and English language requirements. Visit: study.unimelb.edu.au

PREREQUISITE SUBJECT
STUDY AREAS
English, mathematics and science

For full details of entry requirements and information for other qualifications, see page 35 or visit: study.unimelb.edu.au/find

CONTACT HOURS
(FIRST YEAR, FULL TIME)
Approximately 20 hours per week, plus independent study time of approximately 20 hours per week
CRICOS: 002153M

“I had a mix of things I was interested in studying at university. I chose Melbourne for its progressive model, which has allowed me to study and explore a range of disciplines within and outside of science: psychology, anatomy, neuroscience, philosophy and languages.”

Jack Woods (Australia)
Bachelor of Science

Your course plan will be different if you are commencing in Semester 2. Some majors cannot be completed within three years from a mid-year start date due to subject availability. You should pay close attention to prerequisite subjects and when they are offered to avoid any unnecessary delays to your course.
Majors within the Bachelor of Science encompass the full range of scientific disciplines, from the fundamental and biological sciences to engineering systems and IT.

AGRICULTURAL SCIENCE
The agricultural industry today is less about sowing seeds and more about science: logistics, engineering, robotics and genetics. Modern farming is a cutting-edge, high-tech industry. At the University of Melbourne, we even have our own robotic dairy! Use your biology and chemistry knowledge to develop food and fibre products that will be sustainable in our changing environment, or put your mathematics and statistics skills to managing livestock and grazing patterns. Within the major, you can choose to specialise in Agricultural Science, Crop Science or Animal Production.

ANIMAL HEALTH AND DISEASE
How do you want to help animals? When your best friend gets hurt, will you be there to stitch Fido up? Will you rush to the stable for a foaling, or work in the lab, tracking disease outbreaks and developing vaccines? Whatever you choose, start your journey with Animal Health and Disease, where you’ll learn about animals and their health, behaviour and handling. If you’re looking to become a vet, you can specialise in Veterinary Bioscience, an accelerated pathway into the Doctor of Veterinary Medicine. Or you could learn about disease surveillance in animal populations through the Animal Disease Biotechnology specialisation, and help prevent another swine or bird flu epidemic.

ANIMAL SCIENCE AND MANAGEMENT
What makes a free-range chicken free-range? Is it really the most ethical option? What is the best breeding practice for livestock? And can we finally confirm which are better: cats or dogs? You might never answer that last question, but in this major you will learn all about animal management and biology, from genetics and reproduction through to behaviour and welfare. You will learn about the complex ethical and moral issues concerning animal ownership, and have the opportunity to focus on the systems management of a chosen species or classification of animals. You can choose to specialise in Animal Behaviour and Welfare, Livestock Production or Animal Science.

BIOCHEMISTRY AND MOLECULAR BIOLOGY
It took 13 years and $1 billion to sequence the first human genome. Today, you only need a few thousand dollars and you’ll get the results tomorrow. In this major, you’ll develop your understanding of biological processes and specialised areas of molecular science. And of course, you’ll spend lots of time in the lab, developing the skills you need to work in this field. You will build the knowledge and techniques now needed in many rapidly advancing fields of medical research and biotechnology.

This major is also available in the Bachelor of Biomedicine.

BIOENGINEERING SYSTEMS
Want to design a medical device or solve a clinical problem that helps patients in need? You’ll study elements of engineering, science and medicine, and learn to use all three to develop new and improved medical treatments, processes and instruments. University of Melbourne bioengineers are working on ground-breaking innovations such as the bionic eye, implants that help control epilepsy and improved ways of delivering life-saving drugs to the body. Follow this major through to the Master of Engineering and imagine what you could do next.

This major is also available in the Bachelor of Biomedicine.

SAMPLE COURSE PLAN – BACHELOR OF SCIENCE
MAJOR IN ANIMAL SCIENCE AND MANAGEMENT

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Subject</th>
<th>Subject</th>
<th>Subject</th>
<th>Subject</th>
<th>Subject</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Biology of Cells and Organisms</td>
<td>Chemistry 1</td>
<td>Introduction to Life, Earth and Universe</td>
<td>Organisation and Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Genetics and the Evolution of Life</td>
<td>Chemistry 2</td>
<td>Human Sciences: From Cells to Societies</td>
<td>Principles of Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Biochemistry in Agricultural Systems</td>
<td>Companion Animal Biology</td>
<td>Animal Structure and Function</td>
<td>Managing Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Comparative Animal Physiology</td>
<td>Ecology and Grazing Management</td>
<td>Topics in Animal Health</td>
<td>Organisational Behaviour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Animal Disease Biotechnology</td>
<td>Applied Animal Reproduction and Genetics</td>
<td>Animal Behaviour</td>
<td>Managing Entrepreneurship and Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Animal Disease Biotechnology 2</td>
<td>Animal Systems Analysis</td>
<td>Tropical Field Ecology</td>
<td>Business Communication</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a sample course plan only. Subjects offered may change from year to year. You will be advised of current subject offerings prior to subject selection and enrolment. This sample study plan assumes you have undertaken VCE Chemistry Units 3 and 4 or equivalent.

The breadth subjects featured in this plan are examples only. You can choose breadth subjects according to your interests. You must complete at least four breadth subjects in this degree, plus another two subjects either as breadth or electives.
BIOTECHNOLOGY

Biotechnology uses biological knowledge to develop new processes and products in industry, health, agribusiness and other areas of human technology. It is one of the world’s biggest and fastest-growing industries. Because it’s so broad, we let you tailor this major to suit your interests or background in areas such as biology, chemistry, physics and engineering. Depending on your focus, you can go on to careers in medical or veterinary science, food technology, agriculture, or forensic science. You can also choose to complete further study with the Master of Biotechnology.

This major is also available in the Bachelor of Biomedicine.

CELL AND DEVELOPMENTAL BIOLOGY

We’re all made of cells, and we all start with just one. But what are cells made of? Find out and learn how they work, and then explore the genetic, molecular and cellular basis of development in a variety of organisms and experimental models. See what happens when cellular processes go bad, resulting in developmental disorders or diseases like cancer or diabetes. In this major, we also make sure you consider the ethical issues associated with new technologies, including IVF, birth control, stem cell technology and genetically manipulated foods and crops, to prepare you for possible careers in research laboratories and the medico-legal area.

This major is also available in the Bachelor of Biomedicine.

CHEMICAL SYSTEMS

In this modern world we take lots of things for granted – but without chemical engineers, we wouldn’t have plastics, pharmaceuticals, toiletries, household cleaners or processed food and drink. Chemical engineers invent, design and implement processes that convert raw materials into valuable products used every day. Follow this major through to the Master of Engineering and join students working on important projects like clean energy biofuels, targeted drug delivery for cancer treatment and new methods of air pollution control.

“My interest in both biology and engineering inspired me to pursue this area of study. The combination of engineering ideas with biological applications is super fascinating, and increasingly relevant in the healthcare of today. As I took the related subjects in my Bachelor of Science, my love for this area of study has grown.”

Claudia Shao (Australia)
Bachelor of Science, major in Bioengineering Systems, Diploma of Languages (Japanese)
CHEMISTRY
Worried about what chemistry is all about? The better question is: What isn’t chemistry all about? Whether it’s harnessing renewable energy sources, next-gen nanotechnology or new medical breakthroughs, chemistry is an ever-present and vital tool for shaping the technologies of the future. The future of science is multidisciplinary, and chemistry sits at the intersection of so much that will change our world over the coming century. This major covers the fields of molecular design and synthesis, analysis and spectroscopic identification of chemical species, quantum chemistry, molecular dynamics, chemical kinetics and thermodynamics.

CIVIL SYSTEMS
Civil engineers have a significant impact on the world, meeting the challenges of urban development, restoring infrastructure after disasters, and building structures to withstand extreme conditions. Learn about planning, design and construction of the built environment, and explore the best ways of interacting with the natural environment. Follow this major through to the Master of Engineering and start creating innovative solutions to urban problems.

This major is also available in the Bachelor of Design.

CLIMATE AND WEATHER
Ever wondered what causes cyclones, or what’s really happening to the ozone layer? Our climate and weather systems influence a lot more than what you decide to wear each morning. In fact, ongoing and unpredictable changes to our climate and weather will greatly challenge how – and where – we live in the future. Study Earth’s atmosphere, oceans and land surfaces through this major, and discover how they combine to influence temperatures, rainfall and other weather. Learn about climate modelling and prediction and, the role of principal wind and ocean current systems. Build your skills in many of the different sciences that play a role in climate and weather.

COMPUTING AND SOFTWARE SYSTEMS
You don’t need us to tell you that the software industry is huge, and it’s only going to get bigger. Whether you’re interested in apps, gaming, productivity software, financial products or web development, this major will build the knowledge and skills you need for a career in the software industry. You’ll use programming languages, learn about the systematic processes behind the software development life cycle, and gain an appreciation of advanced computing. Then, level up your major with graduate study.

DATA SCIENCE
Over the past decade there has been an explosion in the amount of data captured from mobile phones, the internet, sensors and instruments. Capturing this data is big business, but how do we make sense of it all? That’s where you come in. Learn to integrate and apply statistical and computational principles to solve real-world problems with large-scale data science, and set yourself up for the career of the future.

SAMPLE COURSE PLAN – BACHELOR OF SCIENCE
MAJOR IN DATA SCIENCE

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foundations of Computing</td>
<td>Foundations of Algorithms</td>
</tr>
<tr>
<td></td>
<td>Calculus 2</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>2</td>
<td>Elements of Data Processing</td>
<td>Probability</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
<td>Experiments in Genetics</td>
</tr>
<tr>
<td>3</td>
<td>Linear Statistical Models</td>
<td>Modern Applied Statistics</td>
</tr>
<tr>
<td></td>
<td>Machine Learning</td>
<td>Applied Data Science</td>
</tr>
</tbody>
</table>

This is a sample course plan only. Subjects offered may change from year to year. You will be advised of current subject offerings prior to subject selection and enrolment. This sample study plan assumes a study score of at least 29 in VCE Specialist Mathematics 3/4, or equivalent.

The breadth subjects featured in this plan are examples only. You can choose breadth subjects according to your interests. You must complete at least four breadth subjects in this degree, plus another two subjects either as breadth or electives.
ECOLOGY AND EVOLUTIONARY BIOLOGY
Have you ever wondered about the history of life on Earth? When and where did a species originate? How did it evolve? What controls where a species is found and how abundant it is? Are birds really dinosaurs? This major combines disciplines from genetics through to ecosystem science to give you a deep understanding of the evolutionary basis of ecosystems, habitats and biodiversity, and the relationships between species and their environments. You can specialise in Ecology, Conservation Ecology, or Evolution and Biodiversity.

ECOSYSTEM SCIENCE
We all like to think we’re green but, for the first time ever, more than 50 per cent of people around the world live in cities. Some think this removes us from nature, but we’re now recognising the value of urban ecosystems, green spaces and urban forests in making our cities more liveable for us, and for our plant and animal neighbours. Meanwhile, outside the cities, we see dwindling forests worldwide and an ever-expanding appetite for forest products and ask: What can we do? This major will show you how to care for, use and protect urban and forest ecosystems. There are two specialisations in this major: Urban Ecosystems and Forest Ecosystems.

ELECTRICAL SYSTEMS
Electrical engineers design and build electronic devices on all scales – from nanoelectronics to nationwide power grids. Not only is electrical engineering the central discipline involved in communications, specifically in civil aviation and the deep space network, it also plays a significant role in the medical field. At the University of Melbourne, our electrical engineers are improving lives by developing systems and instrumentation for bionic vision, hearing technologies and life-support systems. Follow this major through to the Master of Engineering to become a qualified engineer.

“I have always been passionate about science, and wanted to study something that was technical but also centred around my area of interest. This led me to computational biology. My advice is to follow and study what you are passionate about. If you do, opportunities that you may not have even heard or know about will present themselves to you.”

Leon Wang (Australia)
Bachelor of Science, major in Computational Biology
ENVIRONMENTAL ENGINEERING SYSTEMS
As an environmental engineer, your job is to build sustainable solutions to environmental problems. In this major, you’ll learn about the complexities of natural systems and how they interact with the built environment by examining land use and management, salinity, water resources management, water quality and soil rehabilitation. Follow this major through to the Master of Engineering and join our graduates alongside biologists, ecologists and resource managers to create a better, more efficient and more sustainable world.

ENVIRONMENTAL SCIENCE
Our environment is facing some serious challenges – from changing climates to habitat loss, environmental degradation, species extinction and overpopulation. Environmental science combines knowledge in biology, chemistry, statistics and earth sciences for a multi-disciplinary approach to overcoming these challenges. You’ll also gain important skills in risk assessment and environmental monitoring, which are crucial to careers in consulting, environmental management and laboratory research.

FOOD SCIENCE
Not even Jamie Oliver will be able to feed the 9.7 billion people we can expect to be sharing the planet with by 2050. Study Food Science and learn new ways to improve, preserve, process, package, store and deliver food products globally. The Food Science major will prepare you to play an important role in meeting the expanding needs of the local and international food industries.

GENETICS
Not long ago, genetics was a highly specialised field, progressed by a dedicated group of researchers called geneticists. Now it is the foundation for studies in all the biological sciences. At its core, genetics is the study of the variation between living things and how this variation is inherited. This can include studies of gene regulation, development, neurogenetics, population genetics and evolution along with genetic disease detection, prevention and treatment in humans, animals and plants. This knowledge is then applied to research in biology, biomedical sciences, biotechnology, ecology and conservation.

This major is also available in the Bachelor of Biomedicine.

GEOGRAPHY
Geographers look at the world around us and ask: What is going on? And then they ask: How can we make it better? This major develops your skills in conservation, environmental practices and social processes though problem-focused and field-based activities. You can study geomorphology, climate change, coastal processes, biodiversity, palaeoecology, sustainable development and globalisation. Optional field subjects will take you to East Timor or China and give you first-hand experience of the landscapes, cultures and politics that define these fascinating countries.

This major is also available in the Bachelor of Arts.

SAMPLE COURSE PLAN – BACHELOR OF SCIENCE
MAJOR IN ENVIRONMENTAL SCIENCE, NATURAL RESOURCES AND HAZARDS SPECIALISATION

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemistry 1</td>
<td>Biology of Cells and Organisms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Global Environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creativity, Play and the Arts</td>
</tr>
<tr>
<td>2</td>
<td>Chemistry 2</td>
<td>Genetics and the Evolution of Life</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Understanding Planet Earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative Projects – Digital Technologies</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Chemistry</td>
<td>Chemistry: Reactions and Synthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysis of Biological Data</td>
</tr>
<tr>
<td></td>
<td>Ecology</td>
<td>Chemical: Structure and Properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dangerous Earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science Communication and Employability</td>
</tr>
</tbody>
</table>

Optional field subjects will take you to East Timor or China and give you first-hand experience of the landscapes, cultures and politics that define these fascinating countries.

- Major subjects
- Subject leading to major
- Elective subjects
- Breath
HUMAN NUTRITION
How many health stars do you look for when buying food? What do you wish you could change about the health and nutrition of our society? Human Nutrition involves the science of food production and processing, the nutrient composition of foods, the interaction of nutrients with our biochemical and physiological make-up, and the impact of diet on health and disease. After studying a major in Human Nutrition, you’ll be well-placed to apply for a graduate degree in dietetics, to qualify you as a dietitian. Studying human nutrition is also a great first step towards careers in food manufacturing, public health or food policy. Take this major together with a track of subjects in a related area, and you’ll be eligible for registration as a Nutritionist with the Nutrition Society of Australia. This major is also available in the Bachelor of Biomedicine.

HUMAN STRUCTURE AND FUNCTION
The human body is amazing. If you want to see just how amazing, then you should choose this major. You’ll get hands-on experience, using human cadavers to understand the relationship between human physiology (function) and anatomy (structure), while being introduced to elements of other relevant fields such as pathology, pharmacology and zoology. This major is a great pathway to further study in medicine or health sciences. This major is also available in the Bachelor of Biomedicine.

IMMUNOLOGY
Learn how immunology – the study of the human immune system, which controls infections and protects against micro-organisms – can apply to a range of areas in the biomedical sciences. This major will teach you to acquire, analyse and apply information from multiple sources, both within and beyond the laboratory. It opens up careers in epidemiology, diagnostics, molecular biology, biotechnology, vaccinology, biosafety and regulation. This major is also available in the Bachelor of Biomedicine.

#21 IN THE WORLD FOR LIFE SCIENCES AND MEDICINE
QS World University Rankings by Subject 2019

“Be excited about the diverse education you are about to experience. Say yes to every opportunity and immerse yourself in as many different experiences as you can. Discover what you are passionate about and give this all you’ve got. Get ready for an incredibly transformational few years.”

Ariana Kamboj (New Zealand) Bachelor of Science, major in Immunology
Marine Biology
Marine biology is much more than just swimming with dolphins. It is the key to understanding and responding to important issues facing our planet, such as global warming and the impact of tourism and pollution on our oceans. You’ll become an expert in marine biological systems, and in the application of ecological principles and environmental management strategies. You’ll also develop a breadth of knowledge across many disciplines, from biological sciences such as botany and zoology to the physical sciences of chemistry, geography and oceanography. You may then decide to explore careers in commercial aquaculture, environmental monitoring, research or tourism (and yes, that may include swimming with dolphins).

Mathematical Physics
From black holes, thermodynamics, electricity and magnetism to acoustics and aerodynamics, mathematical physics has helped answer many of the big questions about our world. This major combines physics and mathematics to provide you with the tools you need to understand the physical world, and will build a strong foundation for careers in logistics management, market research, medical or research analysis, finance, materials science or mining.

Mathematics and Statistics
Do you want your degree to set you up for the data-driven 21st century economy? Do you want to learn the universal language for abstraction and predictive modelling? Or maybe you’re just captivated by the intrinsic beauty of patterns and deep truths about numbers and how the Universe works. With a major in mathematics and statistics, you’ll learn powerful analytical and problem-solving skills you can use anywhere. You could design algorithms for an innovative start-up, control and optimise processes in big industry, advance health care through data science, help governments and societies make critical decisions, or pursue an international career in fundamental research.

Mechanical Systems
Mechanical engineers create innovative solutions to global challenges. Study the operation and control of machines in a wide range of contexts, from transportation (including cars, aircraft and ships) through to everyday devices such as air conditioners and dishwashers. You will discover how to design, plan and manage the systems, people and technical facilities needed to produce goods and services for industrial and domestic use. You’ll also study the generation and harnessing of energy and technologies to protect the environment. Mechanical Systems interacts with all other branches of engineering, and is increasingly involved with other fields of study such as medicine and biology. Follow this major through to the Master of Engineering.

This major is also available in the Bachelor of Design.

Mechatronics Systems
If the future is self-driving cars, Amazon delivery drones and reusable rockets, then the career of the future is mechatronics. If you like mechanical, electrical and software engineering, why not combine the three and develop the next generation of automated technologies? A detailed understanding of how mechanical, electronic and software engineering interact enables the development of ‘smart’ products and systems such as computer-controlled robots, washing machines, automotive equipment, medical imaging systems, wind and wave generators, advanced CNC machines and hybrid and electric vehicles. You can then go deeper into this field with further study in the Master of Engineering.

Microbiology and Immunology
Life on Earth began with, and has always depended on, the activities of micro-organisms. Most of these activities are helpful to the planet and to us, but occasionally micro-organisms can do bad things, like cause infections, with potentially disastrous outcomes. Our immune system fights infections, and usually wins, but it’s an arms race and we must constantly adapt to battle new infections. Learn about the incredible ability of micro-organisms to evolve and survive, and how our immune system works to control infections and provide immunity against those micro-organisms that are out to harm us. This major is also available in the Bachelor of Biomedicine.

Sample Course Plan – Bachelor of Science®
Major in Mechanical Systems Leading to the Master of Engineering

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Semester 1</th>
<th>Engineering Systems Design 1</th>
<th>Calculus 2</th>
<th>Physics 1</th>
<th>Introductory Microeconomics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester 2</td>
<td>Engineering Systems Design 2</td>
<td>Linear Algebra</td>
<td>Physics 2: Physical Science and Technology</td>
<td>Accounting Reports and Analysis</td>
</tr>
<tr>
<td></td>
<td>Semester 2</td>
<td>Engineering Mathematics</td>
<td>Foundations of Electrical Networks</td>
<td>Engineering Materials</td>
<td>Econometrics 1</td>
</tr>
<tr>
<td>Year 3</td>
<td>Semester 1</td>
<td>Mechanics and Materials</td>
<td>Systems Modelling and Analysis</td>
<td>Imaging the Environment</td>
<td>Business Finance</td>
</tr>
<tr>
<td></td>
<td>Semester 2</td>
<td>Mechanical Design</td>
<td>Thermodynamics and Fluid Mechanics</td>
<td>Numerical Programming for Engineers</td>
<td>Investments</td>
</tr>
</tbody>
</table>

- **Major subjects**
- **Subject leading to major**
- **Elective subjects**
- **Breadth**

1. This is a sample course plan only. Subjects offered may change from year to year. You will be advised of current subject offerings prior to subject selection and enrolment.
2. Students who have a study score of 25 or higher in VCE Mathematical Methods Units 3 and 4, but did not achieve 29 or higher in Specialist Mathematics Units 3 and 4, take Calculus 1 before proceeding to Calculus 2. Students with 27 or 28 in Specialist Mathematics Units 3 and 4 are eligible for entry to Linear Algebra.
3. The breadth subjects featured in this plan are examples only. You must complete at least four breadth subjects in this degree.
NEUROSCIENCE
How the brain works is both fascinating and baffling, and there is still so much yet to be discovered about these living computers. This major will give you an understanding of how the nervous system is organised and how it functions, from the biology of nerve cells and neural circuits through to neural systems and complex behaviours. You’ll also find out how modern neuroscience interacts with molecular and cell biology, physiology, psychology, and cognitive and information science. You can then take this knowledge and apply it to fields such as drug development, behavioural research, brain imaging or whatever other possibilities your brain can come up with.

This major is also available in the Bachelor of Biomedicine.

SAMPLE COURSE PLAN – BACHELOR OF SCIENCE MAJOR IN NEUROSCIENCE

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Biology of Cells and Organisms</td>
<td>Genetics and the Evolution of Life</td>
</tr>
<tr>
<td>Year 2</td>
<td>Biological Psychology</td>
<td>Cognitive Psychology</td>
</tr>
<tr>
<td>Year 3</td>
<td>Neurophysiology: Neurons and Circuits</td>
<td>Complex Functions in Neuroscience</td>
</tr>
</tbody>
</table>

- **Major subjects**
- **Subject leading to major**
- **Elective subjects**
- **Breadth**

PATHOLOGY
Diseases are a part of life, and a part of death. It wasn’t that long ago that we didn’t know the root cause of even the most common diseases, and there is still so much to learn. Discover how pathology has made rapid advances by looking at disease from all angles – molecular, cellular, tissue, functional, biochemical and immunological. Use cutting-edge medical research and the latest understanding of human biology and molecular genetics to understand the mechanisms behind disease. You could end up doing diagnostic pathology in a biotechnology lab, or complete further study for a career in disease research or as a medical pathologist.

This major is also available in the Bachelor of Biomedicine.

SAMPLE COURSE PLAN – BACHELOR OF SCIENCE MAJOR IN PHYSICS

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Physics 1</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>Year 2</td>
<td>Quantum and Thermal Physics</td>
<td>Laboratory and Computational Physics 2</td>
</tr>
<tr>
<td>Year 3</td>
<td>Laboratory and Computational Physics 3</td>
<td>Statistical Physics</td>
</tr>
</tbody>
</table>

- **Major subjects**
- **Subject leading to major**
- **Elective subjects**
- **Breadth**

PHARMACOLOGY
Some drugs save lives; some destroy lives. Pharmacology is the study of the interaction between drugs and humans (and other animals) – it’s how we find out what works and what doesn’t. In this major you can choose a research project that could contribute to major advances in the treatment of diabetes, heart attack, asthma, cancer, Parkinson’s disease and many other ailments affecting humans. Maybe you’ll be inspired to set off on a research path in this $1 trillion industry. Or maybe your new-found knowledge will take you elsewhere, into business or government. You’ll be studying in the heart of Australia’s pharmaceutical industry, so look out for opportunities to connect with the many companies and institutes in our neighbourhood.
PHYSICS

Biological, chemical, engineering, medical, and financial sciences – at their most fundamental levels, everything in nature can be explained by physics. So, if you want to understand how a bumblebee flies, how a quantum computer works, or how to build a wind turbine that doesn’t fall down, study Physics. You should also study Physics if you are inspired by the beauty of the cosmos and want to reveal its mysteries, or if you want to use the biggest machine ever built to see the smallest particles ever observed.

PHYSIOLOGY

Discoveries in physiology affect on health and medicine, our environment, industry, nutrition, exercise and reproductive biology, and you could set yourself up for a career in any of these areas by understanding how cells, organs and whole-of-body functions work. Our bodies work amazingly well most of the time, but what happens when something goes wrong? Learn how disturbances in the endocrine, cardiovascular, musculoskeletal, developmental and neural control systems impact our health, and devise experimental studies that might help us understand what we can do to stop them.

This major is also available in the Bachelor of Biomedicine.

PLANT SCIENCE

Forget solar panels and Tesla batteries, the true solar energy and storage powerhouses of the world are plants. Study the big and the small, from single-celled algae (the solar factories of the oceans), to giant eucalyptus trees, ancient ferns, the crop plants that supply most of the world’s nutritional needs, or the plant toxins that might be the basis for the next life-saving drug. Plant science (also called botany) can take you in as many directions as there are plants – from agriculture to horticulture, and from conservation to biotechnology.

PSYCHOLOGY

Admit it. Deep down, we all want to know what everyone else is thinking. Understanding human behaviour is hard, because how we behave is complex and keeps changing as our environment and technology shifts. Learn about every stage of human behaviour, from behavioural neuroscience to cognitive processes, and the practical aspects of developmental, social and clinical psychology. With further study in one of our accredited masters degrees you can gain registration as a professional psychologist.

This major is also available in the Bachelor of Arts and Bachelor of Biomedicine.

SPATIAL SYSTEMS

Study the science and technology of 3D measurement, mapping and visualisation, and focus on the fundamental questions of where, what and when. Spatial information experts develop the technologies that lie behind urban analytics, smart cities, disaster management, GPS, web mapping, mobile location-based services and virtual environments. In the Spatial Systems major, you’ll learn about spatial data handling and infrastructure, web and mobile mapping, spatial analysis, spatial cognition and logical reasoning. This major leads to the professionally accredited Master of Engineering.

This major is also available in the Bachelor of Design.

ZOOLOGY

Did you know that some female lizards can clone themselves, a baby bandicoot is born after only 12 days of pregnancy and that some baby spiders practise ‘matriphagy’ – eating their mothers after birth? The Zoology major gives you the option to study animals at every scale, from the biology of cells to the behaviour of whole populations. You can choose to specialise in Behavioural Ecology, Reproductive Biology or Wildlife and Conservation. We’re not promising you’ll be the next Sir David Attenborough, but he did study zoology at university, so it’s a start!

SAMPLE COURSE PLAN – BACHELOR OF SCIENCE MAJOR IN ZOOLOGY

Year 1	Semester 1	Biology of Cells and Organisms	Chemistry 1	Famine: The Geography of Scarcity	The Developing World
	Semester 2	Genetics and the Evolution of Life	Chemistry 2	Biology of Australian Flora and Fauna	International Politics
Year 2	Semester 1	Animal Structure and Function	Analysis of Biological Data	Blue Planet: Intro to Marine Environments	Politics and the Media
	Semester 2	Comparative Animal Physiology	Ecology	Environmental Chemistry	Development in the 21st Century
Year 3	Semester 1	Ecology in Changing Environments	Marine Ecosystems: Ecology & Management	Animal Behaviour	School Experience as Breadth
	Semester 2	Tropical Field Ecology	Applied Ecology	Science Research Project	Science Communication and Employability

<table>
<thead>
<tr>
<th>Major subjects</th>
<th>Subject leading to major</th>
<th>Elective subjects</th>
<th>Breadth</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is a sample course plan only. Subjects offered may change from year to year. You will be advised of current subject offerings prior to subject selection and enrolment. This sample study plan assumes that students have achieved a score of 25 or more in VCE Mathematical Methods Units 3 and 4 or equivalent, and VCE Chemistry Units 3 and 4 or equivalent.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The breadth subjects featured in this plan are examples only. You can choose breadth subjects according to your interests. You must complete at least four breadth subjects in this degree, plus another two subjects either as breadth or as science electives.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“During my Bachelor of Science, I took breadth subjects in commerce and law, which I really enjoyed. My experience of these subjects prompted me to consider a career that combined business and science. I chose to go into biotechnology because the course has a strong industry focus. So far it has been great for exploring my passions in both science and business!”

Turlough Crowe (Australia)
Bachelor of Science, major in Neuroscience (now in the Master of Biotechnology)
Concurrent diplomas allow you to study an extra qualification alongside your degree. This can enhance your employability and enable you to develop detailed knowledge in an area outside your main area of study.

Diplomas give you flexible options to enrich and broaden your studies. A concurrent diploma is taken at the same time as your undergraduate degree. It usually adds a year on to your study.

DIPLOMA IN COMPUTING
Gain an understanding of the IT technologies and tools that employers are seeking. Develop skills in programming, designing online solutions and developing web applications – whether you have programmed before or not.

AVAILABLE TO:
Students enrolled in Arts, Biomedicine, Commerce, Design, Music and Science.

PREREQUISITES
Successful completion of 50 points of University study, including the core subject COMP10001 Foundations of Computing, with a weighted average of 65%.

DIPLOMA IN LANGUAGES
Languages available: Ancient Greek, Arabic, Chinese, French, German, Hebrew, Indonesian, Italian, Japanese, Latin, Russian and Spanish.

AVAILABLE TO:
Students enrolled in Arts, Biomedicine, Commerce, Design, Music and Science.

PREREQUISITES
If you are applying for a Diploma in Languages other than in Ancient Greek, Hebrew or Latin and have not studied your chosen language at the University, you are required to take a Language Placement Test.

DIPLOMA IN MATHEMATICAL SCIENCES
Develop high-level numerical and modelling skills that can be applied across diverse areas of employment.

AVAILABLE TO:
Students enrolled in Arts, Biomedicine, Commerce, Design, Music and Science.

PREREQUISITES
A study score of 30 in VCE Specialist Mathematics Units 3 and 4 or equivalent, or successful completion of university-level studies equivalent to VCE Specialist Mathematics Units 3 and 4.

DIPLOMA IN MUSIC
Further your musical training or explore areas of academic and practical interest in music. You can tailor the program depending on your interests and access the full range of Conservatorium options.

PREREQUISITES
There are no additional prerequisites once you are enrolled in your undergraduate degree. Some ensemble subjects require an audition, and entry to the music performance stream – involving individual instrumental or vocal lessons – is by recorded audition, submitted in early February.

Bachelor of Science students who select a major in Mathematics and Statistics or Mathematical Physics or Data Science are not permitted to complete a Diploma in Mathematical Sciences.
YOUR STUDENT EXPERIENCE

University life is not just about going to class and studying for exams. The best way to make the most of your time on campus is by taking advantage of all that the University of Melbourne has to offer, including practical experiences and workshops, overseas study and student clubs and societies.

STUDY ABROAD AND EXCHANGE
We encourage all Bachelor of Science students to undertake part of your degree overseas. By doing so, you can immerse yourself in a different social, cultural and intellectual scene, with the chance to add an international perspective to your studies.

INTERNSHIPS
Local and international internships provide you with the opportunity to integrate the knowledge and skills you have developed in your course with genuine work experience. In addition to developing employability skills, you will improve your knowledge of how science and technology can be applied in different organisations, and explore potential career paths.

INDUSTRY SEMINARS AND EVENTS
There are many opportunities to network and build connections while you’re at university, and it’s never too early to start thinking about your career. The Faculty of Science’s Industry and Career Seminar Series brings together guests from a range of public and private enterprises to talk about their experiences and share insights into the industry. Past panelists have included representatives from Arup, IBM, PwC, the Environment Protection Authority, the Department of Environment, Land, Water and Planning, CSL, and the Burnet Institute.

SCIENCE: NEXT STEPS
Next Steps is a program of events providing the opportunity to consider your future at any stage of your degree, whether you’re course planning and choosing your major, seeking employment or moving on to further study.

SCIENCE FESTIVAL
Science Festival runs during National Science Week each year and features guest speakers, science displays, workshops, activities and much more. You can take it all in as an attendee, or you can get involved right from the start and help to organise or host an event.

STARTUP SUPPORT
The Melbourne Accelerator Program is the University’s startup incubator, offering mentorship, seed funding and support to nurture our student and graduate entrepreneurs.

VOLUNTEERING
There are many volunteering opportunities available for Science students, including In2Science – a classroom-based mentoring program for Year 8 and 9 maths and science students – and orientation events, such as group leading and peer mentoring.

STUDENT CLUBS AND SOCIETIES
Joining a club or society allows you to continue some of the extracurricular activities you already love, find a new interest or meet like-minded friends from within or outside of your degree. The University has over 200 clubs and societies, including the Science Students’ Society and the Pre-ENG club.

SCIENCE: DAY 1
We want to make sure you feel prepared for your degree from day one. Science: Day 1 is your academic orientation day, introducing you to the structure of the Bachelor of Science. You’ll get information on what’s available in the degree, subject planning ideas and the opportunity to meet staff and other Science students.

MENTORING
Connect with an industry mentor who will share their experience of transitioning to work, advise you on career options and help you build your professional network.

JOB READY
Job Ready is a free eight-week program that will develop your communication skills and enhance your employability so you’ll stand out from the crowd when applying for jobs. You will learn and practise communication in multiple modes to a variety of audiences. You will come away with the skills you need to effectively convey your achievements and talents to employers.
GET A COMPETITIVE EDGE
A graduate degree can be a life-changing option. You’ll be equipped with specialised cognitive and technical skills and an internationally recognised graduate qualification, setting you apart from those who study a traditional Australian single or double degree. In Australia, students with a graduate degree earn more, too – on average, 37 per cent, or more than $22 000 extra per year.

THE GRADUATE SCHOOL EXPERIENCE
At Melbourne, you’ll get the full benefit of the graduate school experience by studying intensively, in small classes led by experts and alongside others who share your deep interests and desire to succeed. Work towards a professional qualification, or join our world-changing researchers with a graduate research degree.

GRADUATE STUDY IN SCIENCE
Graduate study areas in STEMM include:
• Biotechnology
• Computational biology
• Data science
• Dental surgery
• Energy systems
• Environment
• Environmental science
• Food science
• Forest ecosystem science
• Geography
• Geoscience
• Information technology
• Medicine
• Nursing science
• Optometry
• Psychology
• Urban horticulture
• And more

RESEARCH
At the Faculty of Science, more than 200 academic staff members supervise research students across a broad range of specialisations. These specialisations advance understanding of issues including climate change, food security and technology.

OTHER GRADUATE OPTIONS
Bachelor of Science graduates may also pursue further study in other areas including:
• Architecture, building, planning and design
• Arts and humanities
• Business and economics
• Education
• Law.

unimelb.edu.au/study/grad-degrees

GUARANTEED ENTRY*
Depending on your ATAR/notional ATAR, you could be eligible for a guaranteed place in a graduate course, subject to meeting prerequisites.

If you don’t meet the ATAR/notional ATAR required for a guaranteed place in the course of your choice, there are still options. We have a range of guarantees available to all students who complete their undergraduate degree at the University of Melbourne to the required standard, regardless of the ATAR/notional ATAR you achieved. Eligibility is based on your performance in your undergraduate degree, and subject to meeting prerequisites.

GRADUATE DEGREE PACKAGES*
If you are a high achieving secondary school student and are confident about the study pathway you want to follow, you can secure your pathway straight from secondary school.

From Year 12 you can now apply for a Graduate Degree Package combining the Bachelor of Science with select University of Melbourne professional entry graduate degrees through VTAC.

DATA SCIENCE
If you attain an ATAR of 96.00+ you’ll be guaranteed a Bachelor of Science / Master of Data Science Graduate Degree Package.

DENTISTRY
If you attain an ATAR of 99.85+ you’ll be guaranteed a Bachelor of Science / Doctor of Dental Surgery Graduate Degree Package.

ENGINEERING
If you attain an ATAR of 96.00+ you’ll be guaranteed a Bachelor of Science / Master of Engineering Graduate Degree Package.

LAW
If you attain an ATAR of 99.80+ you’ll be guaranteed a Bachelor of Science / Juris Doctor Graduate Degree Package.

OPTOMETRY
If you attain an ATAR of 99.00+ you’ll be guaranteed a Bachelor of Science / Doctor of Optometry Graduate Degree Package.

PHYSIOTHERAPY
If you attain an ATAR of 98.00+ you’ll be guaranteed a Bachelor of Science / Doctor of Physiotherapy Graduate Degree Package.

TEACHING
If you attain an ATAR of 95.00+ you’ll be guaranteed a Bachelor of Science / Master of Teaching Graduate Degree Package specialising in Primary, Secondary, Early Childhood or Early Childhood and Primary.

VETERINARY MEDICINE
If you attain an ATAR of 98.50+ you’ll be guaranteed a Bachelor of Science / Doctor of Veterinary Medicine Graduate Degree Package.

YOUR NEXT STEPS
Studying at the University of Melbourne is a journey with many possible destinations. Your undergraduate degree will give you the breadth, depth and experience you need to join the workforce. Or, when you’re informed and ready, you can choose to progress to one of 400 graduate courses at our 18 graduate schools.

Quality Indicators for Learning and Teaching, 2018 Graduate Outcomes Survey.

* The guaranteed entry pathways outlined on this page are available to domestic and international students who complete an Australian Year 12 or the International Baccalaureate (IB) in Australia in 2019. Eligible students must enrol in a University of Melbourne undergraduate degree immediately following Year 12, or be granted a deferral by the University.
Flexibility and choice are at the heart of the Melbourne Model. We’ve provided you with some examples of popular pathways here, but these are just a small sample of the hundreds of undergraduate and graduate study combinations you can follow. For more information on pathways, visit: unimelb.edu.au/study/pathways

<table>
<thead>
<tr>
<th>BACHELOR OF SCIENCE</th>
<th>GRADUATE DEGREE</th>
<th>YOUR CAREER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnology</td>
<td>Major in Biotechnology 3 years</td>
<td>Master of Biotechnology 2 years</td>
</tr>
<tr>
<td>Computational Biology</td>
<td>Major in Computational Biology 3 years</td>
<td>Master of Computational Biology 1.5 years</td>
</tr>
<tr>
<td>Data Science (Graduate Degree Package available)</td>
<td>Major in Data Science, Computing and Software Systems or Mathematics and Statistics 3 years</td>
<td>Master of Data Science 1.5 years</td>
</tr>
<tr>
<td>Dentistry</td>
<td>Any major including prerequisites 3 years</td>
<td>Doctor of Dental Surgery 4 years</td>
</tr>
<tr>
<td>Engineering (Graduate Degree Package available)</td>
<td>Any engineering systems major 3 years</td>
<td>Master of Engineering 2 years</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>Environmental Science, Ecosystem Science, Geography or others 3 years</td>
<td>Master of Environmental Science 2 years</td>
</tr>
<tr>
<td>Food Science</td>
<td>Major in Food Science 3 years</td>
<td>Master of Food Science 2 years</td>
</tr>
<tr>
<td>Law</td>
<td>Any major 3 years</td>
<td>Juris Doctor 3 years</td>
</tr>
<tr>
<td>Medicine</td>
<td>Any major including prerequisites 3 years</td>
<td>Doctor of Medicine 4 years</td>
</tr>
<tr>
<td>Physiotherapy (Graduate Degree Package available)</td>
<td>Prerequisite subjects in human anatomy and human physiology 3 years</td>
<td>Doctor of Physiotherapy 3 years</td>
</tr>
<tr>
<td>Psychology</td>
<td>Major in Psychology with honours 4 years</td>
<td>Master of Psychology 2 years</td>
</tr>
<tr>
<td>Science Research</td>
<td>Any major with honours 4 years</td>
<td>Doctor of Philosophy 3 years</td>
</tr>
<tr>
<td>Any major plus Master of Science</td>
<td>Any major plus Master of Science 5 years</td>
<td>Doctor of Veterinary Medicine 3 years</td>
</tr>
</tbody>
</table>

Veterinary Medicine (Graduate Degree Package available)
Qualified engineers are in high demand globally. As an engineering graduate, you can access a vast range of interesting and well-paid employment opportunities around the world. At the University of Melbourne, you’ll gain fundamental engineering knowledge for a successful career – not just your first job.

ENGINEERING AT MELBOURNE
To become a professionally accredited engineer, you’ll complete a three-year undergraduate degree with an engineering major or sequence, followed by a two-year Master of Engineering at the Melbourne School of Engineering. There are nine engineering systems majors in the Bachelor of Science, providing you with a broad and flexible pathway for studying engineering in a wider scientific context. You can:

• Focus on your chosen field of engineering, explore different types of engineering or complement your course with subjects from outside your core discipline
• Gain a world-class education of greater technical depth and breadth
• Graduate with two degrees, including a higher-level masters qualification.

PROFESSIONAL RECOGNITION
The Master of Engineering is the first degree in Australia to be accredited by both Engineers Australia and EUR-ACE® in Europe.

HOW TO BECOME A PROFESSIONAL (ACCREDITED) ENGINEER THROUGH THE BACHELOR OF SCIENCE

STEP 1: CHOOSE AN ENGINEERING MAJOR (3 YEARS)
BIOENGINEERING SYSTEMS
CHEMICAL SYSTEMS
CIVIL SYSTEMS
COMPUTING AND SOFTWARE SYSTEMS
ELECTRICAL SYSTEMS
ENVIRONMENTAL ENGINEERING SYSTEMS
MECHANICAL SYSTEMS
MECHATRONICS SYSTEMS
SPATIAL SYSTEMS

STEP 2: CHOOSE GRADUATE STUDY IN ENGINEERING (2 YEARS)
MASTER OF ENGINEERING OR MASTER OF ENGINEERING (WITH BUSINESS)

STEP 3: EMPLOYMENT AS A PROFESSIONAL (ACCREDITED) ENGINEER

#1 IN AUSTRALIA,
#35 IN THE WORLD
FOR ELECTRICAL AND ELECTRONIC ENGINEERING

QS World University Rankings by Subject 2019

● The Master of Engineering (Materials) is provisionally accredited by Engineers Australia until sufficient students graduate from the program. The Master of Engineering is accredited by EUR-ACE®, apart from the Master of Engineering (Software) and (Software with Business), which are accredited by Euro-Inf®.
With the support of an industry partner, Elena and her team are developing an autonomous, self-charging drone.

“The project arose due to the Black Saturday fires, where fires were caused by the ill-maintenance of power lines.

“Our idea was to design an autonomous drone that could inspect those lines. And because drones have such a short flight time, the drone would also have the ability to charge inductively off the power line. Then it could fly interstate and operate 24/7 – it would be cheaper, faster and safer than current alternatives.”

Elena Vella
Bachelor of Science (Mechatronics Systems)
Master of Engineering (Mechatronics)
INFORMATION TECHNOLOGY

The University of Melbourne is Australia’s leading higher education institution for computer science and information systems. Our IT graduates are highly sought after and globally mobile.

IT AT MELBOURNE

You’ll have flexible options to incorporate IT into your undergraduate course, with pathways to our professionally accredited graduate programs.

Four IT majors within the Bachelor of Science offer pathways to a career in IT or to professional graduate study:

- Computing and Software Systems
- Data Science
- Mechatronics Systems
- Spatial Systems.

You can undertake the Diploma in Computing alongside your Bachelor of Science (see page 20), or study IT as breadth.

HOW TO BECOME AN INFORMATION TECHNOLOGY PROFESSIONAL THROUGH THE BACHELOR OF SCIENCE

STEP 1: COMPLETE AN IT MAJOR (3 YEARS)

- Computing and Software Systems
- Data Science
- Mechatronics Systems
- Spatial Systems

STEP 2: COMPLETE GRADUATE STUDY IN IT (2 YEARS, DEPENDING ON PRIOR CREDIT)

- Master of Data Science
- Master of Engineering
- Master of Information Systems
- Master of Information Technology
- Master of Science (Bioinformatics)

STEP 3: EMPLOYMENT AS AN IT PROFESSIONAL, A SPATIAL EXPERT OR A PROFESSIONAL (ACCREDITED) ENGINEER

INFORMATION TECHNOLOGY

#1 IN AUSTRALIA, #32 IN THE WORLD FOR COMPUTER SCIENCE AND INFORMATION SYSTEMS

QS World University Rankings by Subject 2019

1. QS World University Rankings by Subject 2019
2. Bachelor of Science students who select a major in Computing and Software Systems or Data Science are not permitted to complete a Diploma in Computing.
3. The Master of Engineering is accredited by EUR-ACE®, apart from the Master of Engineering (Software) and (Software with Business), which are accredited by Euro-Inf®.
4. The Master of Engineering (Software), Master of Information Systems and Master of Information Technology are accredited by the Australian Computer Society.
5. More information on accreditation is available at eng.unimelb.edu.au/study/accreditation
6. Subject to Academic Board approval
“I developed a newfound passion for software after taking a computing subject in my second year. Since then I’ve progressed my software engineering skills, and I’ve gained negotiation skills that help me manage clients in a business environment.”

Ryan O’Kane (Australia)
Master of Engineering (Software)
Bachelor of Science (Computing and Software Systems)
Psychology is the study of the human mind and behaviour. If working with people and exploring how they think, feel and behave appeals to you, consider a career in psychology.

PSYCHOLOGY AT MELBOURNE

At Melbourne, psychology is studied as a professionally accredited major sequence within select courses, as a minor sequence, or as individual breadth subjects in most degrees. No additional prerequisites are required in first year.

MAJOR IN PSYCHOLOGY

To complete an Australian Psychology Accreditation Council (APAC)-accredited major sequence, you need 125 credit points of study. You can do this through the Bachelor of Science.

FOURTH YEAR PSYCHOLOGY

The fourth-year program is focused on research and can be undertaken through one of:

- A Bachelor of Science (Honours) degree with an APAC-accredited three-year sequence in psychology (or equivalent); or
- The Graduate Diploma in Psychology (Advanced) – open to graduates with an undergraduate degree (or equivalent) that includes an APAC-accredited three-year sequence in psychology (or equivalent).

Both options are accredited by APAC.

PSYCHOLOGY AT GRADUATE LEVEL

To register as a psychologist in Australia, you must complete the four-year accredited undergraduate honours sequence followed by at least two years of professionally accredited training at masters level, or by two years of supervised practice with a registered psychologist.

MASTER OF PSYCHOLOGY (CLINICAL NEUROPSYCHOLOGY)

The core objective of this two-year program is to provide graduates with the skills to work as professional neuropsychologists. Graduates will have competence in various approaches to the study of brain disease, including basic and applied clinical sciences, and will have an understanding of objective assessment of the many behavioural features of brain diseases.

MASTER OF PSYCHOLOGY (CLINICAL PSYCHOLOGY)

This two-year program equips graduates with the skills to work as professional clinical psychologists, and provides a thorough grounding in the discipline of clinical psychology, particularly in the area of mental illness.

MASTER OF APPLIED PSYCHOLOGY

This 1.5-year course is designed for psychology graduates who want to develop practical skills in the applications of psychology and to employ them in the world of business, government, the non-profit sector, marketing, consumer and social research, and health.

The Master of Applied Psychology does not carry professional accreditation and is not a pathway to professional registration as a psychologist.

CAREER OUTCOMES

With the extra training needed to qualify as a registered psychologist, you could forge a rewarding career in clinical psychology, clinical neuropsychology, community psychology, counselling psychology, educational psychology, forensic psychology, health psychology, organisational/industrial psychology, sports psychology, or academic psychology.

If you choose to enter the workforce after completing your undergraduate degree, you could put your psychology know-how to work in government, marketing and market research, health promotion, social research, human resources or policy development.
HOW TO BECOME A REGISTERED PSYCHOLOGIST IN AUSTRALIA THROUGH THE BACHELOR OF SCIENCE

STEP 1: COMPLETE THE ACCREDITED PSYCHOLOGY MAJOR (3 YEARS)
- Select the 125 Point APAC-Accredited Major Sequence through the Bachelor of Science.

STEP 2: COMPLETE THE BACHELOR OF SCIENCE (HONOURS) (1 YEAR)

STEP 3: COMPLETE GRADUATE STUDY (2 YEARS)
- Master of Psychology (Clinical Psychology) or
- Master of Psychology (Neuropsychology) or
- Master of Psychology/PhD (4 Years)

STEP 4: REGISTER AS AN ACCREDITED PSYCHOLOGIST IN AUSTRALIA
EXPERIENCE UNI WHILE YOU’RE STILL AT SCHOOL

You don’t have to wait until after secondary school to get a taste of studying Science at the University of Melbourne. Here are some ways you can get a head start.

THE SCIENCE EXPERIENCE
Every January the Faculty of Science hosts Year 9 and 10 students for a three-day science summer program. Students get to meet other students from all around Victoria and work through a fun, interactive program of activities. Our program is designed to provide an experience of university life with lectures, laboratory experiments and hands-on interactive experiences run by our top academics. Students will also get to explore the campus and world-class facilities located in Parkville.

RESIDENTIAL INDIGENOUS SCIENCE EXPERIENCE (RISE)
The Residential Indigenous Science Experience aims to inspire Indigenous students about the exciting and rewarding careers that can lead from studying maths and science. Developed by the University of Melbourne and the Gene Technology Access Centre (GTAC), the program is carefully crafted for Year 9 and 10 students to experience the tangible and hands-on nature of science, including workshops and special presentations on chemistry, geology, genetics, physics and maths, as well as visits to industry.

YEAR 10 WORK EXPERIENCE
The Faculty of Science offers work experience to Year 10 students in June each year. We provide students with a sample of activities that are part of a career in science including conducting experiments, attending seminars of new work, collaborating with others on research projects and presenting your own findings. Students will discover what it’s like to be a scientist by participating in interactive workshops and activities in a discipline of their choice. Participants enjoy meeting like-minded new friends and scientific role models as well as getting a taste of university life.

AMAZING SPAGHETTI MACHINE
Year 10 students from across Victoria are invited to participate in our annual Amazing Spaghetti Machine Contest. Students work in teams and put their maths, science, engineering and project management skills to the test in the creation of a ‘spaghetti machine’ – an overly complex device that is used to perform a relatively simple task.

ENGINEERING AND IT
Our broad program of engineering and IT events includes DesignMasters and CodeMasters, Programming Challenge for Girls, Hands on Engineering and IT, and the Victorian Indigenous Engineering Winter School. These events challenge students to solve problems through design and computer programming. Girl Power in STEM encourages girls to learn through camps, work experience and mentoring opportunities.
The Melbourne Model encourages you to challenge yourself and try out different ways of thinking. Our scholarships are just one way in which we encourage you to follow your curiosity and study what you love, because that’s how you thrive.

With over 1200 different types of scholarships available for new and current students, it’s more than likely there is one that you’re eligible for.

We have scholarships awarded on merit only and some that take other factors into account; some to help with your expenses in Melbourne and some to help you travel the globe. There are scholarships that support your whole course or help you explore a specific interest. Wherever you are, and whatever your passion, with a Melbourne scholarship you can turn ambition into achievement.

In addition to our scholarships, we offer many prizes, grants and bursaries that can help you get the most out of your time at university. Most of these are awarded to continuing students at different points in their studies, so it’s quite likely that you’ll pick up a scholarship, bursary, prize or travel grant during your time here.

Grants are available to undertake volunteering or leadership activities. Excel in your studies and you could pick up a coveted prize for academic achievement. Bursaries are available for a variety of needs and can ease the financial pressures of uni so you can focus on your studies.

HANSEN SCHOLARSHIP
From 2020, the Hansen Scholarship Program will support 20 exceptional students from all around Australia with a unique financial and personal support program including cash benefits, mentoring and accommodation, as well as full-fee remission for Australian temporary protection visa holders.

MELBOURNE CHANCELLOR’S SCHOLARSHIP
If you’re in your final year of high school and expecting a high ATAR, make the most of it with a Melbourne Chancellor’s Scholarship, the flagship award in our broad program of scholarships for high achievers.

NATIONAL MERIT SCHOLARSHIP
The National Merit Scholarship takes the stress out of relocating from Australian states and territories outside Victoria with an $8000 allowance paid in the first semester of your studies.

MELBOURNE PRINCIPALS’ SCHOLARSHIP
The Melbourne Principals’ Scholarship awards $5000 to Victorian Year 12 or International Baccalaureate students, in recognition of their academic achievement and contribution to their school or wider community.

HUMANITARIAN ACCESS SCHOLARSHIP
The Humanitarian Access Scholarship offers full fee remission and $15 000 in living allowances to talented students who have applied for asylum in Australia.

MELBOURNE INTERNATIONAL UNDERGRADUATE SCHOLARSHIP
For high-achieving international students, fee remissions worth up to $56 000 are available through the Melbourne International Undergraduate Scholarship.

ELITE ATHLETE PROGRAM
If you excel in sport, our Elite Athlete Program offers generous scholarships to help you pursue your sporting dreams as well as your academic aspirations.

scholarships.unimelb.edu.au/hansen

scholarships.unimelb.edu.au/about-scholarships/melbourne-chancellors-scholarship

scholarships.unimelb.edu.au/about-scholarships/melbourne-principals-scholarship

scholarships.unimelb.edu.au/hansen

scholarships.unimelb.edu.au/humanitarian-access-scholarship

scholarships.unimelb.edu.au

The Melbourne Scholarships Program is one of the most comprehensive and generous in Australia. With the Hansen Scholarship Program new in 2020, the depth and range of support at the University of Melbourne is greater than ever.
ACCESS MELBOURNE

Access Melbourne is the University of Melbourne’s special entry and equity program for domestic students.

Access Melbourne can help you gain a place in the Bachelor of Science, or one of our other undergraduate degrees, even if your ATAR is below the selection rank normally required for an offer (subject to course prerequisites being met). You may also be eligible for guaranteed entry or an Access Scholarship.

We also have scholarships and grants that can ease the financial load, and a housing program to get you securely settled close to campus.

In 2019, 30 per cent of our domestic undergraduate students were eligible for Access Melbourne, and demonstrated that, because of personal circumstances, their ATAR was not fully reflective of their real potential.

GET A GUARANTEED PLACE

If you’re from a rural or isolated area, have a disadvantaged financial background or are an Indigenous Australian, you could be eligible for a guaranteed place.

For 2019, the guaranteed ATAR for Science via Access Melbourne was 78.00 (75.00 for Indigenous students). Guaranteed ATARs for entry in 2020 will be published in June 2019 at: access.unimelb.edu.au

AM I ELIGIBLE?

To apply for Access Melbourne you must:

• Be an Australian or New Zealand citizen, Australian permanent resident or holder of a permanent humanitarian visa
• Have not been awarded results in a degree course at a tertiary institution (this does not apply to applicants for the mature-age consideration category and does not include single subjects, bridging schemes or higher education studies undertaken as part of Year 12)
• Have demonstrated the capacity to successfully undertake the course of your choice
• Apply for a University of Melbourne undergraduate course through the Victorian Tertiary Admissions Centre (VTAC).

HOW TO APPLY

Lodge a Special Entry Access Scheme (SEAS) application via VTAC at: vtic.edu.au for one or more of the following Access Melbourne categories:

• Disadvantaged financial background
• Applicants from rural or isolated areas
• Under-represented school
• Difficult circumstances
• Disability or medical condition
• Non-English speaking background
• Recognition as an Indigenous Australian
• Mature-age consideration (non-school leaver entry pathway).

ACCESS SCHOLARSHIPS

Approximately 200 Access Melbourne students every year also receive an allowance of $5000 per year (paid in half-yearly instalments) for the normal, full-time duration of the course. Every Indigenous student who enrols in Semester 1, 2020 is guaranteed one of these scholarships.

We also offer a tuition waiver of up to $30,500 for 10 high-achieving Access Melbourne students per year. Plus, if you live in regional Victoria or interstate, the University will reserve a place in a residential facility close to our Parkville campus for the first year of your studies.

scholarships.unimelb.edu.au

scholarships.unimelb.edu.au

Percentage is based on start-year intake.

The offer does not include the cost of the accommodation. Places are limited, so apply early to avoid disappointment.
HOW TO APPLY

DOMESTIC STUDENTS
Domestic students applying for an undergraduate course must submit an application through the Victorian Tertiary Admissions Centre (VTAC). Domestic students studying overseas must also apply through VTAC. Full details about the VTAC application process can be found at:
vtac.edu.au

NON-SCHOOL LEAVER ENTRY PATHWAY
All applicants to the University must demonstrate academic merit and meet other requirements as part of the application process. As a non-school leaver, you may not have a recent study history and therefore may not meet the standard entry requirements for the course of your choice. The non-school leaver entry pathway provides mature-age applicants and those who are not entering direct from Year 12 an alternative way to demonstrate their eligibility for entry and their likelihood to succeed in their chosen course.
access.unimelb.edu.au/nsl

INTERNATIONAL STUDENTS
International students studying the VCE, an Australian Year 12 or IB in Australia must apply through VTAC for Semester 1 entry.

All other international students, including those undertaking foundation studies in Australia, must apply directly to the University or through one of our overseas representatives.

For a step-by-step guide on how to apply, visit:
study.unimelb.edu.au/how-to-apply

FEES

DOMESTIC STUDENTS
All domestic undergraduate students are enrolled in a Commonwealth Supported Place (CSP), subsidised by the Australian Government. Payment of the student contribution amount can be deferred through HECS-HELP for eligible students.

INTERNATIONAL STUDENTS
Tuition fees are charged for each year that you are enrolled. You will pay tuition fees according to your specific enrolment in any given semester. Detailed fee information, including the fee policy covering your enrolment, will be provided when you are offered a place at the University. For full details about tuition fees, visit:
study.unimelb.edu.au/how-to-apply/fees

STILL NEED TO MEET THE MATHEMATICS PREREQUISITE?
The School of Mathematics and Statistics offers an online subject to help you meet the required mathematics prerequisite for entry to the Bachelor of Science. You’ll cover material similar to VCE Mathematical Methods Units 3 and 4. To find out more and enrol, visit:
mspace.unimelb.edu.au/courses/short-courses/calculus-and-probability-online

PATHWAY TO SCIENCE: DIPLOMA IN GENERAL STUDIES
If you’re a domestic student, you could be eligible for a guaranteed place in the Bachelor of Science if you complete the one-year Diploma in General Studies with an average score of 75. The program, based at Dookie campus, gives you a taste of tertiary studies in a range of areas, including agriculture, commerce, design and science. To be eligible for the guarantee you must also be eligible for Access Melbourne at the time you apply for the diploma.
Entry Requirements

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Bachelor of Science</th>
<th>Science (Melbourne Chancellor’s Scholarship)</th>
<th>Bachelor of Science (Extended)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Year 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic students: 2020 minimum ATAR</td>
<td>85.00</td>
<td>99.90</td>
<td>50.00</td>
</tr>
<tr>
<td>Domestic students: 2019 lowest selection rank</td>
<td>85.00</td>
<td>99.90</td>
<td>A range of criteria is used for selection</td>
</tr>
<tr>
<td>International students: 2020 guaranteed ATAR</td>
<td>85.00</td>
<td>99.90</td>
<td>N/A</td>
</tr>
<tr>
<td>VCE (Units 3 and 4) prerequisite subjects</td>
<td>A study score of at least 25 in English/English Language/Literature or at least 30 in EAL, and at least 25 in Mathematical Methods or Specialist Mathematics, and in one of Biology, Chemistry, or Physics; OR A study score of at least 25 in English/English Language/Literature or at least 30 in EAL, and at least 25 in both Mathematical Methods and Specialist Mathematics</td>
<td>Units 1 and 2: Satisfactory completion of one of Biology, Chemistry, General Mathematics, Maths: Mathematical Methods or Physics; and Units 3 and 4: A study score of at least 25 in English/English Language/Literature or at least 30 in EAL</td>
<td></td>
</tr>
<tr>
<td>International Baccalaureate (IB) Diploma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International students: 2020 guaranteed IB score</td>
<td>31</td>
<td>99.90 (notional ATAR)</td>
<td>N/A</td>
</tr>
<tr>
<td>IB prerequisite subjects</td>
<td>English, Mathematics (or Further Mathematics), and one of Biology, Chemistry or Physics; OR English, Mathematics and Further Mathematics</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>GCE A Levels/Singapore A Levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International students: 2020 guaranteed score</td>
<td>BCC</td>
<td>Not available to A Levels students</td>
<td>N/A</td>
</tr>
<tr>
<td>A Level prerequisite subjects</td>
<td>A grade of at least C in Mathematics, one of Biology, Chemistry or Physics, and an accepted AS Level English subject</td>
<td>Not available to A Levels students</td>
<td>N/A</td>
</tr>
<tr>
<td>Trinity College Foundation Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International students: 2020 guaranteed score</td>
<td>80</td>
<td>Not available to TCFS students</td>
<td>N/A</td>
</tr>
<tr>
<td>TCFS prerequisite subjects</td>
<td>EAP, English, Mathematics 1, one of Biology, Chemistry or Physics; OR EAP, English and both Mathematics 1 and Mathematics 2</td>
<td>Not available to TCFS students</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1. Domestic students: Applicants who achieve the minimum ATAR for a course will be eligible for a place, provided prerequisite studies and any other specific course requirements are met. The lowest selection rank to which an offer was made may be higher, depending on demand for the course and the number of places available. Only applicants eligible for special entry schemes will be admitted below the minimum ATAR.
2. Students who achieve an ATAR or notional ATAR of 99.90 or above (or 90.00 or above if Indigenous) and satisfy course prerequisites will be guaranteed a place in the Bachelor of Science (Melbourne Chancellor’s Scholarship). Students must have completed an Australian Year 12 qualification or the International Baccalaureate (IB) in Australia or be Australian citizens studying an Australian Year 12 or the IB overseas in the year prior to entry. (Students must either enrol immediately or be granted a deferral in the year following Year 12.)
3. International students: The University guarantees admission to a course when an international student achieves the required score, meets prerequisite studies, satisfies the English language requirements and there are still places available in the course at the time of acceptance. If you do not meet the guaranteed score your application will not be considered for entry. Guaranteed scores apply only if no further study has been undertaken after completion of one of these programs. Domestic students completing an international qualification: The score listed should be considered a minimum score to be eligible for a place in that course. The actual standard required may be higher depending on the demand for the course and the number of Commonwealth Supported Places (CSP) available.
4. Applicants intending to progress to Doctor of Veterinary Medicine are encouraged to complete VCE Units 3 and 4 in Chemistry or equivalent.
5. Accepted GCE AS and A Level English subjects are: General Paper, General Studies, English Language and Literature, English Literature, English Language. Singapore A Level subject Knowledge and Enquiry (H2) is also accepted.
6. To be eligible for the Bachelor of Science (Extended), you must be of Aboriginal or Torres Strait Islander descent. For more information, visit: study.unimelb.edu.au/find/courses/undergraduate/bachelor-of-science-extended
7. For students with English as their second language a pass in English B at the required level will be accepted as satisfying the English prerequisite. Except where specified, IB subjects must be passed at at least Grade 4 Standard or Higher Level. Mathematical Studies is not deemed equivalent to VCE Mathematical Methods.
OPEN DAY
Sunday 18 August 2019
10am–4pm
Parkville and Southbank campuses
study.unimelb.edu.au/openday

CONTACT US
If you’re considering studies at the University of Melbourne, we’d love to hear from you online or meet you on campus.

Sign up and submit enquiries online at:
study.unimelb.edu.au/connect-with-us

For information on our courses and entry requirements contact Stop 1

Call 13 MELB (13 6352)
+ 61 3 9035 5511

Visit us at Stop 1 (Parkville):
757 Swanston Street
The University of Melbourne
Victoria 3010 Australia

Intellectual property: Copyright in this publication is owned by the University and no part of it may be reproduced without the permission of the University.
Disclaimer: The University endeavours to ensure that information contained in this publication is current and correct at the time of printing (May 2019).