Coursework
Master of Engineering (Civil)
- CRICOS Code: 069275C
Navigation
What will I study?
Overview
The Master of Engineering (Civil) is a 2–3 year degree (full-time) depending on your prior study.
Course structure
First year
In your first year (or equivalent) you’ll complete foundation engineering subjects – tailored to students from a non-engineering background. If you’ve completed the Civil Systems major in your bachelor’s degree, plus the required maths and science subjects, you’ll receive credit for these foundation engineering subjects and start in second year.
Second and third year
In the second and third year (or equivalent), you’ll focus on your chosen engineering discipline. As a civil engineering student, you will focus on sustainable urban developments, environmental protection and the conservation of energy and water resources.
You will learn structural, geotechnical, hydraulic and transportation engineering, as well as the application of these disciplines in ports and harbour, energy, sustainability and project management. The course has also been designed to give you a broader understanding of sustainability design and environmental processes.
You’ll undertake an industry, design or research project and gain the skills and knowledge to practice as a professional engineer.
Industry, design and research subjects
Internship subject
Enhance your skills and build work experience through our academically credited internship subject. Running over 10-15 weeks, you could intern for organisations in diverse applications including transport, infrastructure, property, electricity distribution, built environment, oil and gas, engineering and construction.
Creating Innovative Engineering subject
You could work on a real-world innovation challenge with an industry mentor through our Creating Innovative Engineering subject.
Research project
Our research projects are supervised by world leading academics often in conjunction with industry. You can undertake a research project to solve a real-world problem as part of a team or on your own, and take the first steps towards a career in research.
Design capstone subjects
Be guided by experienced engineers in preparing an infrastructure design proposal in our Integrated Design – Infrastructure subject. Learn how to scope a design to meet society’s needs including suburban precincts, transport systems or water and renewable energy supply systems.
You could also learn how to design major civil infrastructure projects including railway stations, trains, airports and stadiums with our Integrated Design – Civil subject.
Sample course plan
View some sample course plans to help you select subjects that will meet the requirements for this degree.
Sample course plan - Semester 1 entry
KEY
- Core
- Selective
- Elective
- Research
Year 1
Total
100 Points
Semester 1
50 Points
- Core
ENGR20004 Engineering Mechanics
12.5 Points
- Core
ENGR30002 Fluid Mechanics
12.5 Points
- Core
CVEN30008 Engineering Risk Analysis
12.5 Points
- Selective
12.5 Points
- Core
Semester 2
50 Points
- Core
CVEN30009 Structural Theory and Design
12.5 Points
- Core
MAST20029 Engineering Mathematics
12.5 Points
- Core
ENEN20002 Earth Processes for Engineering
12.5 Points
- Core
ENGR20003 Engineering Materials
12.5 Points
- Core
Year 2
Total
100 Points
Semester 1
50 Points
- Core
CVEN90043 Sustainable Infrastructure Engineering
12.5 Points
- Core
CVEN90044 Engineering Site Characterisation
12.5 Points
- Core
CVEN90049 Structural Theory and Design 2
12.5 Points
- Elective
12.5 Points
- Core
Semester 2
50 Points
- Core
CVEN90045 Engineering Project Implementation
12.5 Points
- Core
CVEN90048 Transport Systems
12.5 Points
- Core
CVEN90051 Civil Hydraulics
12.5 Points
- Core
CVEN30010 Systems Modelling and Design
12.5 Points
- Core
Year 3
Total
75 Points
Semester 1
25 Points
- Core
CVEN90050 Geotechnical Engineering
12.5 Points
- Elective
12.5 Points
- Core
Year long
25 Points
- Research
12.5 Points
- Selective
12.5 Points
- Research
Semester 2
25 Points
- Core
CVEN90058 Construction Engineering
12.5 Points
- Elective
12.5 Points
- Core
Sample course plan - Semester 2 entry
KEY
- Core
- Selective
- Elective
- Research
Year 1
Total
100 Points
Semester 2
50 Points
- Core
ENGR30002 Fluid Mechanics
12.5 Points
- Core
MAST20029 Engineering Mathematics
12.5 Points
- Core
ENGR20003 Engineering Materials
12.5 Points
- Core
ENGR20004 Engineering Mechanics
12.5 Points
- Core
Semester 1
50 Points
- Selective
12.5 Points
- Core
CVEN30008 Engineering Risk Analysis
12.5 Points
- Elective
12.5 Points
- Core
CVEN90043 Sustainable Infrastructure Engineering
12.5 Points
- Selective
Year 2
Total
100 Points
Semester 2
50 Points
- Core
CVEN30010 Systems Modelling and Design
12.5 Points
- Core
ENEN20002 Earth Processes for Engineering
12.5 Points
- Core
CVEN90048 Transport Systems
12.5 Points
- Core
CVEN30009 Structural Theory and Design
12.5 Points
- Core
Semester 1
50 Points
- Elective
12.5 Points
- Core
CVEN90049 Structural Theory and Design 2
12.5 Points
- Core
CVEN90044 Engineering Site Characterisation
12.5 Points
- Core
CVEN90050 Geotechnical Engineering
12.5 Points
- Elective
Year 3
Total
100 Points
Semester 2
37.5 Points
- Core
CVEN90058 Construction Engineering
12.5 Points
- Core
CVEN90051 Civil Hydraulics
12.5 Points
- Core
CVEN90045 Engineering Project Implementation
12.5 Points
- Core
Year long
12.5 Points
- Selective
12.5 Points
- Selective
Semester 1
50 Points
- Elective
12.5 Points
- Research
CVEN90047 IE Research Project 2
25 Points
- Elective
12.5 Points
- Elective
Explore this course
Explore the subjects you could choose as part of this degree.
Core
- Engineering Mechanics12.5 pts
The aim of this subject is to provide an introduction to modelling the stresses and deformations that occur when axial, torsional and flexural loads are applied to a body in static equilibrium, as well as the translational and rotational motions that eventuate in a body subject to different load applications. This material will be complemented with laboratory and project based approaches to learning.
The subject provides the basis for all the mechanical engineering subjects that follow. The calculations introduced in this subject are the most common type of calculations performed by professional mechanical engineers in all sectors of the industry.
INDICATIVE CONTENT
Topics to be covered include free-body diagrams; equilibrium; force systems; stresses and strains; coordinate systems; statically indeterminate systems; flexure; bending under combine loads; torsion; power transmission; kinematics; relative motion; particle kinetics; impulse and momentum; vibration; rigid body motion; angular impulse and momentum; work and energy.
- Fluid Mechanics12.5 pts
AIMS
This subject concerns the fundamental science of fluid flow relevant to a range of engineering applications, and is essential for specialisations relating to Chemical, Civil and Environmental Engineering.
INDICATIVE CONTENT
Topics covered include - Fluid statics, manometry, derivation of the continuity equation, mechanical energy balance, friction losses in a straight pipe, Newton’s law of viscosity, treatment of pipe roughness, valves and fittings; simple pipe network problems; principles of open channel flow; compressible flow, propagation of pressure wave, isothermal and adiabatic flow equations in a pipe, choked flow. Pumps – pump characteristics, centrifugal pumps, derivation of theoretical head, head losses leading to the actual pump head curve, calculating system head, determining the operating point of a pumping system, throttling for flow control, cavitation and NPSH, affinity laws and pump scale-up, introduction to positive displacement pumps; stirred tanks- radial, axial and tangential flow, type of agitators, vortex elimination, the standard tank configuration, power number and power curve, dynamic and geometric similarity in scale-up; Newtonian and non-Newtonian fluids, Multi-dimensional fluid flow-momentum flux, development of multi-dimensional equations of continuity and for momentum transfer, Navier-Stokes equations, application to tube flow, Couette flow, Stokes flow.
- Engineering Mathematics12.5 pts
This subject introduces important mathematical methods required in engineering such as manipulating vector differential operators, computing multiple integrals and using integral theorems. A range of ordinary and partial differential equations are solved by a variety of methods and their solution behaviour is interpreted. The subject also introduces sequences and series including the concepts of convergence and divergence.
Topics include: Vector calculus, including Gauss’ and Stokes’ Theorems; sequences and series; Fourier series, Laplace transforms; systems of homogeneous ordinary differential equations, including phase plane and linearization for nonlinear systems; second order partial differential equations and separation of variables.
- Earth Processes for Engineering12.5 pts
AIMS
In this subject students will be introduced to physical earth processes and their engineering applications and implications. In particular, the subject concentrates on engineering aspects of climate, water and soils and their interactions. Simplified modelling and relevant analytical techniques are introduced throughout the subject. The students will learn about fundamental material required for later year subjects such as CVEN30010 System Modelling and Design, CVEN90044 Engineering Site Characterisation and CVEN90050 Geotechnical Engineering.
INDICATIVE CONTENT
Climate and seasonality; carbon cycle, global water cycle and catchment water cycle; rainfall, infiltration, runoff and evapotranspiration; catchment processes and stochastic rainfall modelling; soil identification; landscape forming processes; basic soil mechanics; earth engineering stability; revision.
- Engineering Materials12.5 pts
AIMS
The subject aims to provide knowledge about construction materials, their properties, manufacturing processes and key issues associated with their applications in structural engineering. The subject also introduces the relationships between the structure of a material and its properties.
This subject must be taken early in the progression of training to be an engineer as it is a prerequisite of structural design subjects, and contributes valuable insights into the role of materials in other disciplines of engineering such as geotechnical engineering. It partners with ENGR20004 Engineering Mechanics to build a student's understanding of the way objects behave when load or deformations are applied to them.
INDICATIVE CONTENT
The subject is divided into three components: materials science; construction materials; and, mechanics of materials. In the material science component; basic concepts on inter-atomic bonding, microstructure of solids and generic material properties related to density, deformation, yield, ductility, fracture, toughness, susceptibility to corrosion and fatigue are introduced. In the construction materials component; the engineering applications of structural and light-gauge steel, concrete, masonry, timber, glass, fibre-glass and composites are covered. In the mechanics component; the basic concepts of stress-strain compatibility, composite actions, the concept of shear stress flow, basic two-dimensional stress analysis, strength and ductility and arching actions are covered.
- Structural Theory and Design12.5 pts
AIMS
This subject introduces the basic methods of structural analysis and the design of simple structures which are built of reinforced concrete, steel, timber and masonry. A feature of this subject is the integration of the design and analytical skills in dealing with contemporary structures that have an effective blending of materials for achieving satisfactory performance and economy in construction.
This subject consolidates basic structural theory and design abilities that underpin further specialised studies in structural design in engineering masters programs. It also gives students some basic capabilities to seek work experience in the engineering profession.
INDICATIVE CONTENT
Topics covered include: stress analysis in beams, deflection calculations using direct integration and virtual work methods, structural analyses of beams and frames by the force method, structural design of reinforced concrete beams and columns, structural design of steel beams, columns and ties, design of timber joists and masonry squat walls.
- Systems Modelling and Design12.5 pts
Systems Modelling and Design is a capstone subject including components from hydrology, hydraulic engineering and geotechnical engineering. This subject contains a design project capsulising knowledge from all three areas. Students will be given briefings on related topics in hydrology, hydraulic engineering and geotechnical engineering in lectures and tutorials; but the emphasis is on self-learning and problem-solving. Students will gain an understanding of the principles governing the flow of water through soil and its consequent impact on failure of soil structures such as what occurs in landslides. Computer models to investigate these areas and laboratory experiments illustrating these phenomena will also be conducted. Students will also learn how to use the systems approach to solve engineering design problems. The application of the systems approach is illustrated via the major design project and complemented with optimisation techniques.
To complete the capstone design project, students are required to apply their knowledge in hydrology, hydraulics and geotechnical engineering to solve a number of design problems while considering multiple and sometimes conflicting design criteria. Students are required to prepare a technical report that documents the designs, relevant data, and result analysis. Both the technical knowledge (e.g. catchment modelling, water distribution system design, and seepage and slope modelling) and transferable skills (e.g. systems approach for problem solving, optimisation, trade-off analysis, data management, communication) obtained through this subject will prepare them for employment in the industry, as well as future study or research.
This subject builds on knowledge gained in subjects such as Engineering Mathematics, Fluid Mechanics and Earth Processes for Engineering and assumes a familiarity with concepts of sustainability and engineering systems. This subject also delivers introductory material for engineering graduate coursework subjects including Geotechnical Engineering, Civil Hydraulics and Quantitative Environmental Modelling.
INDICATIVE CONTENT
Stresses in soils, permeability and seepage, flow nets, the effect of seepage on stability, slope stability principles, surface runoff, landslides, design and remediation, trade-off analysis in engineering design, optimisation techniques, the use of computer simulation models to solve engineering design problems.
Selective
- Critical Communication for Engineers12.5 pts
Critical Communication for Engineers (CCE) addresses the skills vital for professional success. Problem analysis skills and being able to present solutions effectively to your engineering peers, leaders and the broader community are a powerful combination. These are the focus of CCE.
They are challenging skills to learn—and you will likely work to improve them throughout your career. Effective communication is not merely about how to write a report or to give a formal presentation. Developing a strong argument—having something insightful to communicate—is essential for capturing the attention of an audience. This requires developing good interpersonal skills for gathering information and testing ideas.
The subject is divided into four ‘topics’ presented in sequence through the semester. Each topic is self-contained and dedicated to a different engineering issue. There is an assessment for each topic, meaning that you will be able to apply what you have learned from one topic to the following topics. This way, you will have a lot of opportunities to practise and develop your analytical and communication skills.
- Creating Innovative Engineering12.5 pts
The aim of this subject is to give participants both practical experience in, and theoretical insights into, elements of engineering innovation.
The subject is intense, challenging, experiential and requires significant self-direction. Participants will work on an innovation project sponsored by a local organisation.
A key theme is that the individual cannot be separated from the technical processes of engineering innovation. The impact of both individual and team contributions to the engineering and innovation processes will be examined in the context of real world challenges.
All project sponsors will require that students maintain the confidentiality of their proprietary information. Some project sponsors will require students to assign any Intellectual Property created (other than Copyright in their Assessment Materials) to the University. The projects may vary in the hours needed for a successful outcome.
Core
- Sustainable Infrastructure Engineering12.5 pts
This subject provides an overview of a wide range of issues relating to infrastructure engineering, with a particular focus on the environmental, economic, and equity of projects. Students will gain an understanding of the complexities of decision-making, including the role of government and regulation, considerations of intergenerational and intragenerational equity, and assessment of economic and environmental impacts. Students will learn about the influential role that infrastructure plays in shaping a society, and the effects both short-term and long-term. Students will also learn to apply various analytical methods to evaluate infrastructure projects from a sustainability perspective. Lectures and workshops will be structured around case studies of infrastructure projects. Workshops will also provide students with opportunities to enhance oral and written communication skills.
This subject is part of a trio of subjects that consider different aspects of infrastructure projects. Engineering Site Characterisation studies how to determine the character of a site for an infrastructure project. Sustainable Infrastructure Engineering examines how a project relates to the broader social, economic, and environmental context. Engineering Project Implementation concentrates on the operational aspects of implementing a project.
- Engineering Site Characterisation12.5 pts
AIMS
Characterisation of sites is an important step in any engineering study or design. In order to devise a design for an engineering project a range of contextual factors need to be determined. These include intrinsic aspects of natural and anthropogenic history, such as geological context and former industrial use as well as it indigenous heritage. Extrinsic impacts on the site such as the risk of flood, fire, and earthquake also need to be well understood. Finally the relationship with the surrounding natural and social environment needs to be characterised to ensure cross boundary effects of the project implementation of post-commissioning use do not cause unpredicted adverse impacts. This subject will examine typical technical tools for characterising a site for infrastructure development, covering a range of the above aspects that are relevant to the site and development. In doing so students will learn the skills and an approach to conduct site assessments, including the ability to select the appropriate geo-environmental tools for site investigations.
This subject is part of a trio of subjects that consider different aspects of infrastructure projects; Engineering Site Characterisation studies how to determine the character of a site for a infrastructure project, Sustainable Infrastructure Engineering examines how the project relates to the broader social, political, economic and environmental context, while Engineering Project Implementation concentrates on the operational aspects of implementing a project. Together they form the basis of further professional infrastructure engineering subjects. Students who have completed this subject will have valuable skills to gain engineering work experience.
INDICATIVE CONTENT
Geotechnical site investigations, noise evaluation and mitigation, natural disaster characterisation (fire, wind, earthquakes), introduction to surveying and levelling, in situ testing (soil), geophysical testing and fieldwork, and exposure to laboratory testing (compaction and permeability).
- Structural Theory and Design 212.5 pts
AIMS
This subject introduces more advanced methods of structural analysis and design, and their applications to the engineering of reinforced concrete and structural steel in compliance with the standards. Students will be given the opportunity to integrate the use of different materials into the design of contemporary structures through design projects. This subject would typically be that final subject in the sequence of structural engineering subjects for civil engineering students who do not want to specialise in structural engineering.
INDICATIVE CONTENT
Topics covered include: structural analyses of beams and frames by the stiffness matrix method; computer analysis using SPACEGASS; virtual work and influence line diagram; design of thin walled sections, structural design of reinforced concrete beams, slabs and columns; structural design of steel beams, columns and connections.
- Geotechnical Engineering12.5 pts
AIMS
Soil and rock are among the most important civil engineering materials. They form the foundations of all structures, can be rearranged to provide a topography to suit particular needs like embankments for road and railways, can form a structure in its own right when used for levee banks or dam walls, or may need to be removed to allow access such as with tunnels and cuttings. Students completing this unit should understand how to make simplifications to complex soil conditions, how to establish strength/deformation characteristics of the soil and how to apply fundamental geomechanics knowledge learned in earlier units to solve problems involving the stability of an earth mass for these various situations. Graduates from this subject will be able to work under the guidance of a chartered engineer to design and supervise construction of a range of geotechnical structures such as foundations, roads, and retaining walls.
This subject builds directly on knowledge from a range of undergraduate and postgraduate subjects in the areas of mathematics, statistics, earth processes, and fluid mechanics. It also draws on knowledge of sustainability and management to provide context for problems.
INDICATIVE CONTENT
Topics covered include a detailed review of pore-water pressures and effective stress, soil strength and compressibility (direct shear and triaxial testing, and others), consolidation, compaction and their applications to geotechnical design in selected areas, rigid and flexible earth retaining structures, reinforced soil walls, pavements, introduction to liquefaction, and introduction to geothermal energy.
- Engineering Project Implementation12.5 pts
AIMS
Project management provides an organization with powerful tools that improve its ability to plan, organize and manage resources to bring about the successful completion of specific project goals and objectives. In undertaking this subject students will explore the principles and distinct technical skills of engineering management that are needed to implement a project. The subject is of particular relevance to students wishing to establish a career in engineering project management, but is also of relevance to a range of engineering design disciplines where design for the total life cycle of the product or infrastructure should be considered. This subject is part of a trio of subjects that consider different aspects of infrastructure projects; Engineering Site Characterisation studies how to determine the character of a site for a infrastructure project, Sustainable Infrastructure Engineering examines how the a project relates to the broader social, political, economic and environmental context, while project implementation concentrates on the operational aspects of implementing a project.
INDICATIVE CONTENT
Topics covered include key aspects of the management principles, project planning & scheduling, management systems & control and management practices to enable execution of the project in a timely and financially prudent manner.
Note: This subject has been integrated with the Skills Towards Employment Program (STEP) and contains activities that can assist in the completion of the Engineering Practice Hurdle (EPH).
- Transport Systems12.5 pts
AIMS
The aim of this course is to provide students with an introduction to urban traffic engineering and transport planning principles. General theory as well as analytical techniques for solving common transport engineering problems is presented.
The key theme in this course is how to improve the sustainability of transport systems. This includes understanding and predicting travel demand. This course emphasizes techniques for modelling and evaluating schemes based on environmental, health and social outcomes. Behavioural choice modelling methods are used to predict demand for public transport and non-motorised transport modes.
CVEN90048 Transport Systems provides a transport-specific learning experience that relates to, builds-on, and extends from the skills and competencies developed via the following Civil Engineering subjects: CVEN90043 Sustainable Infrastructure Engineering and CVEN90045 Engineering Project Implementation.
INDICATIVE CONTENT
Topics covered include:
- Introduction to Transport Systems
- Traffic Flow Theory
- Traffic Control Devices
- Unsignalised Intersection Capacity Analysis
- Travel Surveys
- Sustainability
- Traffic Survey Methods
- Public Transport
- Transport Network Models
- Road Safety
- Signalised Intersection Capacity and Timing
- Freeway Management
- Geometric Design of Roads
This subject has been integrated with the Skills Towards Employment Program (STEP) and contains activities that can assist in the completion of the Engineering Practice Hurdle (EPH).
- Civil Hydraulics12.5 pts
AIMS
Students that successfully completely this subject will have the skills to practice under a chartered engineer to analyse problems and propose designs in the field of civil and environmental hydraulic engineering. Analysis of water flow in natural and constructed channels is studied in the river hydraulics module. This gives students the fundamental tools to learn techniques such as flood prediction, the design of channels for water movement in irrigation, and the prediction of water levels in channels in environmental flow studies. The movement of water and sediment along coasts due to wave action and currents is the focus of the coastal hydraulics module. An understanding of wave processes in coastal and surf zones is an essential starting point for the design of coastal structures such as piers, groins and jetties. With impending sea level rise, this will be a significant area of civil engineering practice for the foreseeable future. In the third module, the focus will be on processes of sediment transport and geomorphological change in rivers and coastal waters. The ability to analyse these processes can lead to graduates working in the area of river engineering, where for example the erosion of sediment from bridge abutments must be controlled. It is also important in ecological modelling where the movement of sediments and entrainment in water can impact on the habitat of stream biota.
The subject will draw on students’ existing knowledge of fluid mechanics, systems modelling, statistics, engineering mathematics and geomorphology gained from undergraduate or other preparatory study.
INDICATIVE CONTENT
- River Hydraulics: revision of basic concepts of steady-state open channel flow and extend this with applications in natural river channels, time dependent behaviour and flood hydraulics
- Coastal Hydraulics: basic wave theory and processes including in the surf zone
- Sediment Transport and Water Quality: mechanisms and models of particulate and solute transport in rivers and coastal environments.
Elective
- Concrete Design and Technology12.5 pts
AIMS
This subject introduces the students to advanced modelling techniques for concrete structures, and to the design and analysis of pre-stressed concrete structures with applications to both buildings and bridges. It builds on knowledge from CVEN90049 Structural Theory and Design 2, in particular the section on the fundamental behaviour of reinforced concrete structural elements when subjected to flexure, axial load and shear. Students will be introduced to strut-and-tie modelling which is used in the analysis and design of complex regions in concrete elements where simple flexural behaviour is disrupted, and also to deformation modelling for reinforced concrete elements which highlights the importance of ductility in these elements. This subject will also introduce advanced concrete technology with discussion of high strength concrete, deterioration mechanisms and the design for durable concrete structures. Students who complete this specialist subject are likely to find employment in design consultancy or concrete construction companies and work under the supervision of a senior engineer.
INDICATIVE CONTENT
Partially prestressed concrete beams: Properties of prestressing steel and types of prestressing systems; Sectional behaviour at service load level, equivalent load concept and load balancing; Creep and shrinkage in concrete; Estimation of prestress losses, deflection and amount of cracking; Indeterminate structures; Anchorages; Applications to building and bridge construction; Applications to precast concrete structures; Deformation modelling; Strut-and-tie modelling; High strength concrete; Design against physical and chemical attack of concrete structures.
- Earthquake Resistant Design of Buildings12.5 pts
AIMS
This subject introduces the fundamental concepts and practice of earthquake resistant design of buildings from an international perspective, incorporating consideration of design in regions of low to moderate seismicity such as Australia and in regions of high seismicity. The design of economically and environmentally feasible structures that can successfully withstand the forces and displacements generated by severe ground motions is a challenge demanding the best in structural engineering art and science. This subject builds on knowledge of Risk Analysis, Engineering Mathematics, Dynamics, and Structural Theory and Design to allow candidates to work as a supervised graduate engineer in this specialised area of practice.
INDICATIVE CONTENT
Topics covered include plate tectonics and seismicity, structural response to earthquake ground motions, design philosophy and design applications to buildings, assessment and retrofitting of existing buildings, and performance of non-structural components and building contents.
- Structural Dynamics and Modelling12.5 pts
AIMS
This subject introduces students to the fundamental concepts of structural dynamics and finite element modelling and teaches students the skills of undertaking structural analyses which involve dynamic (or transient) actions in a practical engineering context. At the conclusion of this subject students should be able to undertake dynamic analyses by hand calculations (that can be enhanced by the use of EXCEL spreadsheets) and effectively employ a commercial computational package (e.g. Strand 7) for more complex analyses. Emphasis is on the ability to undertake independent checks of results generated by the computer. Improved proficiencies in structural dynamics and modelling will result in more economical design of structures and a more sustainable built environment. This subject builds on students’ fundamental knowledge of engineering mathematics, mechanics and structural analysis. For students considering a career in structural design for earthquake resistant structures this is an important subject to prepare for professional practice as a graduate under the supervision of a chartered engineer.
INDICATIVE CONTENT
Topics covered include: introduction to finite element formulations for in-plane (membrane) stress analysis, use of finite element modelling packages; the response analyses of single-degree-of-freedom systems, discrete multi-degree-of-freedom systems and distributed mass (continuous) systems in conditions of natural vibrations and forced excitations; numerical time-step integration techniques; excitation simulation techniques, simultaneous equation solution and reduction techniques; frequency domain analyses and processing of time-series data. Skills acquired from the various topics outlined above will be integrated and applied to a number of case studies.
- High Rise Structures12.5 pts
AIMS
This subject introduces students to the special requirements necessary for the successful design of high rise buildings. Elements of high rise building design considered in the subject are structural floor, framing and foundation systems, wind loading including wind tunnel testing and earthquake loading, analysis techniques including computer-aided analysis, vertical movements and second order effects, facade design, construction methods, sustainability concepts and a review of case study buildings.
The subject builds on fundamental structural engineering knowledge and when learnt together with other structural engineering electives will provide students who successfully complete the subjects a well-rounded knowledge of a range of structural engineering design skills. Students who complete this subject may find work in a structural engineering consultancy or as a site engineer and work under the supervision of a chartered professional engineer on high rise building designs or design variations.
INDICATIVE CONTENT
Introduction to high-rise design; introduction to finite element analysis; loads and design criteria for tall buildings; gravity load resisting; structural systems; gravity loads; lateral load resisting structural system; SpaceGass modelling; wind loading and analysis; earthquake induced loading; distribution of lateral loads to structural elements; coupled core systems and outriggers; theoretical treatment for column beam frames; architectural aspects and sustainability concepts; extreme loading effects; foundations of tall buildings; and, construction methods. Skills acquired from the above topics will be integrated and applied to the assignment which consists of a detailed analysis of a typical high rise building.
- Extreme Loading of Structures12.5 pts
AIMS
This subject is aimed at teaching the scientific principles associated with extreme events including that of earthquakes, impact, blast and cyclonic wind and their effects on a structure. Students will also be trained to make effective use of state-of-the-art techniques in quantifying the effects of the design actions in order that suitable level of protection can be incorporated into the structure to counter an extreme event. At the conclusion of this subject students should be capable of modelling a variety of extreme loadings by employing advanced techniques. Students will also be able to apply the modelling methodologies to fulfil performance based design objectives. Improved proficiencies in countering extreme loading in the design of structures will achieve better economy and a more sustainable built environment. This subject builds on students’ fundamental knowledge of engineering mathematics, mechanics and structural analysis. With frequency of extreme events increasing due to climate change, increased mass and speed of vehicles and terrorism, this subject provides graduates with specialist knowledge to work in the field of hazard reduction or avoidance under the guidance of a chartered engineer.
INDICATIVE CONTENT
Topics covered include Rayleigh Method for developing a simplified model of a structural element, hand calculation techniques for analysing the impact action of a solid object based on linear elastic and elasto-plastic behaviour of the structure, considerations for the conditions of contact and anomalies associated with contributions by the higher modes. Another major topic to be covered is the capacity spectrum method involving linear, or non-linear, static analysis for the assessment of a building structure subject to seismic actions. Other topics include the analysis of blast actions by hand calculations and phenomena associated with the aerodynamic actions of wind.
- Geotechnical Applications12.5 pts
AIMS
This is a geotechnical engineering elective subject in which student will be introduced to various geotechnical engineering applications topics, including the design of shallow and deep foundations, common issues in foundation construction, site characterization and rock slope assessment, tunneling and earth dam designs and numerical Modelling in Geotechnics. This practically oriented elective subject builds on the fundamental material learned earlier in ENEN20002 Earth Processes for Engineering and CVEN30010 System Modelling and Design, and fully integrates with the knowledge gained from the two core subjects CVEN90044 Engineering Site Characterisation and CVEN90050 Geotechnical Engineering. This subject is of particular interest to students intending to establish a career in geotechnical engineering; it is also relevant to a range of engineering disciplines in which a good knowledge of geotechnical engineering offers an advantage.
INDICATIVE CONTENT
Shallow foundations - bearing capacity and settlement; Piled foundations - types, function, bearing capacity and settlement; Site characterization – Planning and implementation of a site investigation, Rock slope assessment – Apply the theories of rock slope engineering on actual problems, Tunneling- Site investigation and initiation of a tunneling project, Earth dams – key aspects of earth dams analysis and design; numerical Modelling in Geotechnics – Application of numerical techniques in geotechnical engineering practice
- Steel and Composite Structures Design12.5 pts
AIMS
This subject aims to introduce the advanced analysis and design of steel and concrete composite structural members used in multi-storey buildings, bridges and other infrastructure. Students will develop an understanding of the procedures required for the design of cold-formed steel members, steel structures in fire, composite slabs, composite beams and composite columns according to Australian and international standards. In addition, the subject also introduces the finite element method for the analysis of frame and plate structures as well as simulates structural design exercises provided by senior experienced practicing engineers. These exercises consist of both conceptual and detailed designs which consider constructability, functionality, sustainability as well as compliance with standards to ensure safety and serviceability.
- Freight Systems12.5 pts
AIMS
There is a need for civil engineers to increase their knowledge and skills in freight systems since they are actively involved in the planning, design, construction, maintenance and management of a range of freight infrastructure such as roads, bridges and ports. Civil engineers require expertise in freight systems to reduce the social and environmental costs from freight including safety, noise and emissions. Training in freight systems also provides opportunities for freight networks to become more productive and efficient increasing economic benefits for society.
Freight infrastructure allows the freight system to operate, facilitating vital components of our economy, including production, distribution and trade.
The purpose of the freight system relates to its role in providing a service for the economy. Freight transport is a derived demand; it does not exist for its own sake. The primary demand is for the consumption of goods where there is spatial separation. Goods are generally stored, processed and consumed at different locations. There is a need for goods to move to increase their value for producers, manufacturers and consumers. Freight can be considered as the economy in motion. Goods are transported as part of the economic activities of production, manufacturing and consumption.
INDICATIVE CONTENT
Freight networks provide a service for producers and manufacturers allowing access to markets for the consumption of goods. The benefit of goods being transported relates to their increased value at their trip destination. Reduced transport operation costs leads to lower production and distribution costs that creates opportunities for lower priced goods.
- Building Information Modeling12.5 pts
In the past few years, the Architecture Engineering and Construction (AEC) industry has observed the evolution of simple 2D drafting programs into integrated Building Information Modelling (BIM) based on 3D spatial technologies. In this subject, students will learn how BIM is used to model, store and visualise architectural, structural, and facilities components of an infrastructure in 3D. Students will also learn how adding time and cost information to BIM allows AEC to foster collaboration in designing infrastructures, minimize the risk of construction errors and optimise the maintenance of them.
The subject is of particular relevance to students wishing to establish a career in civil engineering, property management, surveying, spatial information and urban planning but is also relevant to a range of disciplines where 3D building information should be considered.
- Environmental Management ISO 1400012.5 pts
AIMS
Environmental Management ISO 14000 aims to provide students with the skills and knowledge to apply and help develop environmental management systems. The subject builds on the student’s knowledge of risk management, such as that gained in CVEN30008 Risk Analysis, and develops their ability to identify, assess and manage environmental risk that arises from the construction and operation of manufacturing or infrastructure facilities. It also builds on knowledge about sustainability such as is learnt in the subject CVEN90043 Sustainable Infrastructure Engineering, and other management systems such as those learnt in CVEN90045 Engineering Project Implementation.
At the conclusion of the subject, it is expected that students should be able to work under supervision in a capacity where they are responsible for the maintenance of an existing environmental management system, or assist in developing a new system. They should also be in a position to conduct simple internal audits and assist in more complex internal audits. The subject does not provide students with sufficient practice and skills to immediately become an accredited auditor in Australia.
INDICATIVE CONTENT
Environmental Management ISO 14000 will cover the following related areas of study: the history of EMS from Demming Wheel to ISO 14000 series; the elements of an EMS; systems audit and review and gap analysis; legal requirements, due diligence document control, liability and ISO 9000 review; regulation and accreditation; community consultation; emerging issues in environmental management.
- Solid Wastes to Sustainable Resources12.5 pts
AIMS
In this subject students will learn about the fundamentals of the solid waste stream in modern society. Emphasis will be placed on the life cycle aspects of waste and the prospect of minimizing waste and maximizing the economic value of waste streams. Interaction between solid wastes and liquid and gaseous waste streams will also be considered. The subject builds on knowledge from subjects such as CVEN90043 Sustainable Infrastructure Engineering where general principles of sustainability are discussed. Student knowledge of systems and material cycles, learnt in subjects such as ENEN90031 Quantitative Environmental Modelling and CVEN30010 Systems Modelling and Design or their equivalent in other subjects forms the basic grounding for the subject. The subject is of particular relevance to students wishing to establish a career in waste management, but is also relevant to a range of engineering design disciplines where design for the total life cycle of the product or infrastructure should be considered.
INDICATIVE CONTENT
Regulatory aspects of waste management, sustainability programs in government and private sector, life cycle assessment, organic waste treatment and management, inorganic waste treatment and management, landfill hydrology and design, cleaner production strategies, hazardous waste management, collection and transport logistics.
- Energy Efficiency Technology12.5 pts
AIMS
This subject explores the scope and methods for improving energy efficiency across a range of sectors. Improving energy efficiency is one of the key responses to increasingly scarce natural resources and problems caused by pollutants arising from energy production and use. A range of energy supply and usage scenarios will be considered including transport, manufacturing, commercial and domestic sectors. Collection of information by auditing and then using this information for planning, demand management and impact assessment will be investigated.
Knowledge gained in this subject will allow graduates to practice in the area of energy efficiency. This subject draws on students’ fundamental understanding of engineering efficiency, as well as their ability to use mathematics and statistics to analyse data to inform innovative solutions. The subject complements other subjects offered in the energy theme of the Department such as Energy for Sustainable Development and Sustainable Infrastructure Engineering.
INDICATIVE CONTENT
Areas of study include: potential for improvements in energy efficiency in petrol and diesel vehicles; energy efficiency technologies for the manufacturing, commercial and domestic sectors; demand side management; integrated resource planning; energy auditing; and economic and environmental impacts.
These are applied to the following thematic areas;
- Introduction: fundamentals, energy conversion, supply, distribution and utilisation of energy, Indices, indicators and measurements
- Advanced energy systems
- Energy audits
- Manufacturing sector
- Commercial sector (office & retail)
- Residential sector
- Transport sector
- Life cycle energy analysis
- Developing countries & remote areas
- Energy policy and planning
- Sustainable Buildings12.5 pts
AIMS
This subject provides a multi-disciplinary overview of the design of sustainable buildings and considers the design from an architectural, services engineering, facade engineering, environmental engineering and structural engineering, tenants and owners perspective. A number of industry based case study examples will be introduced to complement the lectures.
This subject uses a project based learning project where students work in teams to design a new or refurbished commercial building to improve the environmental and social performance of the building. Students learn to apply sustainability-rating tools used in industry to their solutions.
Students in the subject come from different disciplinary backgrounds, principally engineering and architecture, and are expected to share their knowledge and learn from each other to successfully complete the project work. This stands them in good stead for entering professional practice in the area of sustainability.
INDICATIVE CONTENT
Topics include: ecological sustainable design, life cycle analysis, planning for sustainable buildings and cities, regulatory environment, barriers to green buildings, green building rating tools, material selection, embodied energy, operating energy, indoor environmental quality (noise, light and air), facade systems, ventilation systems, transportation, water treatment systems, water efficiency, building economics, and staff productivity. These will be covered in the following thematic areas:
- Sustainable Cities
- Sustainable Precincts
- Building Envelope
- Building services - Heating, Ventilation and Air Conditioning
- Building services - Energy
- Building Services - water
- Existing Buildings
- Green Building Rating Tools
- ESD Drivers and Barriers
- ESD Economics
- the process of a green building - 60L CH2
- Business Perspective
- Case Studies.
- Energy for Sustainable Development12.5 pts
AIMS
This subject provides understanding of the principles of development and sustainability in the context of renewable and non-renewable energy sources. Social, environmental and financial implications of technologies to de-carbonise emissions and technologies that can offer a future non-carbon energy supply are discussed.
This subject uses project based learning where students work in teams to investigate the appropriateness of a selected energy source or a selected technology for a particular country, region or a location. Students learn to apply the principles of sustainability and development.
Knowledge gained in this subject will allow graduates to practice in the area of energy policy and planning. The subject complements other subjects offered in the energy theme of the Department such as Solar Energy, Energy Efficiency Technology and Sustainable Infrastructure Engineering.
INDICATIVE CONTENT
- Introduction: What does 'sustainable' mean? What is development? A model for sustainable development
- Consumption (needs versus wants), Global perspectives (inequality and resource distribution)
- Role of energy in development
- Requirements for an sustainable energy supply
- Carbon versus non-carbon energy supply - overview (resources, usage)
- Problems with past patterns of energy use
- Energy efficiency (potential and limits)
- Energy Policy
- Transport futures and peak oil (resources)
- Carbon capture and storage
- Nuclear fission and fusion
- Renewable energy technologies - large and small
- Discussion Forum: Reality of Sustainability.
- Water and Waste Water Management12.5 pts
AIMS
In this subject students will learn about the fundamentals of water quality and the associated standards for use as potable water, recycled water or discharge into the environment in a sustainable manner. The subject will include the identification of risks and measures to control those risks and various treatment processes including physical, chemical and microbiological treatment of water and wastewater. The concept of integrated water management will be introduced and reinforced in the group based project work throughout the semester. Students will learn about the systems for water reclamation and reuse. This subject builds on a range of student’s general knowledge of water systems engineering that is developed in subjects like Systems Modelling and Design and builds on general knowledge of chemistry and biology. It is also assumed that students have developed skills on identifying and sourcing information, and can effectively work as a team to solve larger problems.
Graduates from this subject may apply the skills developed in the water supply, waste water treatment, or water sensitive urban design areas.
INDICATIVE CONTENT
This subject covers theoretical and practical management aspects of sustainable water supply and treatment, wastewater treatment and reuse. Specific topics include:
- Integrated water management
- Risk identification and management for water services
- Water quality guidelines, regulations and performance criteria for treatment plant design
- Water treatment processes and waste disposal
- Wastewater treatment - physical, chemical and biological treatment technologies
- Systems for water reclamation and reuse.
The students will produce a conceptual design of a water and wastewater treatment system for a small town.
- Groundwater Hydrology12.5 pts
AIMS
This subject covers theoretical and practical aspects of groundwater flow, and groundwater contaminant transport. The subject includes the field methods to characterise aquifers, the modelling of groundwater flow, and transport of, pollutants through porous media and reactions. The subject takes students fundamental knowledge of advanced differential calculus and flow processes and applies them to movement of pollutants in groundwater systems. Techniques learnt in this course may be applied in capstone design and research projects.
Concepts and techniques learnt in the subject are directly applicable to contemporary industry issues such contaminant movement through soils from poor historical industrial practice, the design and performance prediction of containment structures such as sanitary landfills or carbon dioxide geo-sequestration projects. The growth of manipulation of geological strata for coal seam gas extraction is another burgeoning area of industrial application of the learning of this subject.
INDICATIVE CONTENT
Specific topics include:
- Groundwater flow in saturated aquifer systems
- Characterisation of acquifer systems using various hydraulic tests
- Numerical solution of groundwater flow
- Groundwater flow in the vadose zone
- Characterisation of unconfined aquifer systems
- Mass transport in saturated media
- Transformation, retardation and attenuation of solutes
- Organic/inorganic compounds in groundwater
- Nonaqueous-phase liquids in groundwater
- Introduction to site remediation.
- Solar Energy12.5 pts
AIMS
This subject provides the application of principles of solar energy engineering. A number of solar technologies and applications methods are investigated.
This subject uses a project based learning where students work in teams to design a solar system for a particular application considering environmental, social and financial constraints. Students learn to apply the principles of solar energy and design.
Knowledge gained in this subject will allow graduates to practice in the area of renewable energy industry. The subject complements other subjects offered in the energy theme of the Department such as Energy for Sustainable Development and Sustainable Infrastructure Engineering.
INDICATIVE CONTENT
- Introduction to Solar Energy in the energy economy; Fundamental heat & mass transfer; Radiation properties of materials; and selective surfaces
- Solar Geometry and solar angles; atmospheric effects and radiation prediction; and Solar radiation measurement
- Flat plate collectors design and performance characteristic
- Concentrating collectors design and performance characteristic; Evacuated tube collectors
- Solar System design methods
- Fundamentals of photovoltaic systems
- Solar process heating
- Solar drying, Solar cookers, Green houses and Solar stills
- Solar water pumping; Solar refrigeration
- Built environment applications passive and active systems
- Solar hot water and solar heat pump systems.
- Environmental Applied Hydrology12.5 pts
AIMS
In this subject students will learn to analyse hydrologic data, to build computer models of catchments, and apply these to hydrologic analysis and real-world design problems. Quantitative analyses of physical hydrology are introduced and emphasis will be placed on the application of fundamental principles of mathematics and physics to the conceptualisation and analysis of the complex interactions that are the hallmark of earth systems. The subject builds on knowledge from ENEN20002 Earth Processes for Engineering where climate and water cycles are studied. It also complements knowledge of modelling and analysis from subjects such as ENEN90031 Quantitative Environmental Modelling and ENEN90028 Monitoring Environmental Impacts. The subject is of particular relevance to students wishing to establish a career in the catchment management or water resources fields, but is also relevant to a range of engineering disciplines where the water cycle should be considered.
INDICATIVE CONTENT
Topics covered include a range of engineering hydrology techniques, precipitation, evapotranspiration, runoff processes, flood hydrology, unsaturated zone, interaction between surface and subsurface water and hydrological modelling.
- International River Basin Management12.5 pts
AIMS
River basins, where human civilisation comes from, are challenged by increasing population pressures, rapid urbanization and climate change impact. A river basin is a semi-closed ecological and economic system, representing logical management units of the water cycle, throughout which all decisions and actions have interdependent ecological, social and economic implications. Thus, river basin management needs interdisciplinary knowledge. This subject aims to equip tomorrow’s water managers with the adaptive approach by linking cutting edge knowledge to stress-tested practices in river basin management.
This subject includes of a 5-7 day field trip held in either China or Australia (in 2017 the field trip will be in Australia) and a major group project to tackle a real river basin management challenge completed mostly during a 1 week intensive workshop. Students are responsible for the cost of travel, accommodation and food.
- Project Management Practices12.5 pts
AIMS
In this subject students will learn about how to evaluate the feasibility of a project and then to define, structure and organise the initial planning phase for both construction projects and complex projects (e.g. IT, high technology projects). The interaction between commercial expectations and project management approaches will be considered broadly based on process and systems thinking. The subject builds on and integrates knowledge from CVEN90043 Sustainable Infrastructure Engineering and/or MCEN90010 Finance and Human Resources for Engineers where the fundamentals of economic appraisal is described, the planning approaches detailed in subject CVEN90045 Engineering Project Implementation and the fundamentals of risk management for which detailed approaches are provided in MULT90014 Business Risk Management. The subject is particularly important for students wishing to understand how to structure and scope projects such that they are well planned on the basis of triple bottom line thinking and the project management processes are efficiently structured.
INDICATIVE CONTENT
Techniques considered include the use of logic maps, business cases and system based project management concepts. Details include the development of acquisition strategies, system life-cycle, boundaries, scope management and mechanisms to control of client expectations and assist them to make sound project decisions leading to the sanctioning of a project. Expected value and Monte Carlo techniques are used as tools to refine project decisions based on risk evaluation.
Project governance arrangements are considered along with cultural context, resourcing requirements of a project and how this is organised and managed. Specific areas considered include the selection of consultants or contractors, communication processes, industrial relations, occupational health and safety, meetings, delegation and leadership.
- Engineering Contracts and Procurement12.5 pts
AIMS
In this subject students will learn how to structure and work with engineering contracts to deliver and procure engineering outcomes. Students will develop a working knowledge of contract administration and gain an understanding of commercial out workings of engineering. All engineers interface commercially with engineering contracts throughout their careers and thus the application of the subject content is broad. Those seeking to work as a contractor and as a contract administrator will find direct application of this subject’s content.
INDICATIVE CONTENT
Commercial management of engineering projects including the role and responsibilities of corporate managers, market analysis, structuring of procurement options, development of contractual terms and conditions, and the pricing of work.
Estimating and tendering engineering works via work breakdown structures, work method statements, risk identification and tendering principles. Contract administration and project control functions and techniques including time and money negotiations and cash flow management are also covered through the use of detailed case study material.
- Engineering Entrepreneurship12.5 pts
AIMS
The aim of this subject is to examine the nature of entrepreneurial behaviour and its role in both small and large organisations within an engineering context. By developing their own enterprise proposal within small groups, students will learn and demonstrate various processes by which successful new ventures are created.
This subject is available as an elective in many of the Melbourne School of Engineering's Masters programs. It is designed to introduce participants to their potential as technical entrepreneurs.
INDICATIVE CONTENT
Business planning, financial management, sources of finance, creativity, innovation, entrepreneurial behaviour, successful technical entrepreneurs.
- Satellite Positioning Systems12.5 pts
AIMS
In this subject students will learn the theory and applications of Global Navigation Satellite Systems (GNSS), such as the Global Positioning Systems (GPS). The subject focuses on high precision GNSS, their design and fundamental operational characteristics, strengths and weaknesses, error sources and mitigation, measurement and data processing techniques. It is a pre requisite for the subject GEOM90039 Advanced Surveying and Mapping. The subject is of broad relevance to students with an interest in technology or to those specifically wishing to establish a career in engineering, mining or cadastral surveying, but is also relevant to a range of mapping, spatial, land surveying and civil engineering disciplines where the capture and processing of spatial or survey measurements to meet a specific performance specification should be considered.
INDICATIVE CONTENT
High precision GPS surveying, Global Navigation Satellite Systems, GPS measurements, Differential GPS, GPS reference station networks, GPS errors, ellipsoidal heights, geodetic datum, geoid, GPS data processing.
NOTE: An intensive learning period of approximately 3-4 days will be conducted as part of this subject. The exact dates and venue will be confirmed at the start of the subject.
- Water Sensitive Urban Design12.5 pts
There is increasing recognition around the world of the threats facing urban environments and their water resources. In many cities water demand is approaching or exceeding limits of sustainability, leading to increasing interest in alternative water sources, such as stormwater harvesting, wastewater recycling and desalination. At the same time, receiving environments such as urban streams and bays are threatened by pollution and erosion from stormwater runoff, or eutrophication due to discharge of poorly-treated wastewater. There is also increasing recognition of the importance of water in the urban landscape, and of its role in the welfare and health of humans.
The concept of “water sensitive urban design” (WSUD), also known as Integrated Urban Water Management (IUWM) has developed in response to these changes. It aims to better integrate water into the urban landscape, improving the sustainability and liveability of cities (for example through the sustaining of health urban vegetation), while securing adequate resources for growing cities.
This subject reflects the integration inherent in WSUD. The course will teach you about the individual urban water cycle components (water supply, wastewater, stormwater, groundwater), but will primary focus on their interactions and integration, and particularly their interaction with the built and natural environment.
The subject includes a mix of lectures and project-based learning, including a major project (broken up into stages throughout the semester), a full-day excursion and workshops involving leading WSUD experts from public and private industry. The subject will cover:
- An introduction to WSUD (its principles, objectives, context within other urban planning and sustainability policy & practice) in developed and developing countries
- Water in the urban landscape, the urban water cycle and its component characteristics
- Social, environmental and economic impacts of urban water management
- Structural tools and techniques (conceptual design, operation, maintenance)
- Non-structural tools and techniques
- Choice of scales
- Analysis methods (water balance calculations, water end-use analysis)
- Lifecycle cost analysis and multi-criteria evaluation frameworks
- Design tools and software (e.g. MUSIC, Urban Developer, House Water Expert)
- Institutional and implementation issues
- Integration between water and other urban design elements
- Internship25 pts
AIMS
This subject involves students undertaking professional work experience at a Host Organisation’s premises. Students will work under the supervision of both a member of academic staff and an external supervisor at the Host Organisation.
During the period of work experience, students will be introduced to workplace culture and be offered the opportunity to strengthen their employability. Students will undertake seminars covering topics that will include professional standards of behaviour and ethical conduct, working in teams, time management and workplace networking.
- Transport System Modelling12.5 pts
AIMS
In undergraduate subjects, students are exposed to some engineering features of transport and traffic engineering. However, these do not fully provide the requisite knowledge and skills for understanding the modelling and planning aspects of transport system engineering. These competencies are of highest importance for those interested in a career in transport engineering. In this subject, students will be provided with the fundamental concept of four-step modelling in depth, including trip generation/attraction, trip distribution, modal split and traffic assignment. The contemporary topics of transport modelling such as choice modelling, car-ownership and uncertainty modelling in the context of transport infrastructure engineering will also be presented. The subject provides real world examples and assignments. The primary emphasis of the subject is on concepts (rather than mathematical details) and getting students ready for the industry.
- Metocean Engineering12.5 pts
The subject examines in-depth the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions. It also provides an introduction to wave and hydrodynamics modelling as a support for engineering applications. It provides a multi-disciplinary overview of problems by combining cutting-edge research in Maritime and Coastal Engineering and industry applications. The subject will provide students with a solid grounding in wave physics that is essential to evaluate the environmental impact on design and operation of marine structures.
Topics include:
- Linear wave theory;
- Second-order wave theory
- Wave Spectrum;
- Tides;
- Wave Measurements;
- Near-shore processes;
- Wave statistics;
- Hydrodynamics and wave modelling;
- Port Structural Design12.5 pts
The subject examines Port/Harbour infrastructures. It provides an in-depth overview of problems and issues relevant for port and harbour engineering. The subject relies on a synergetic approach combining cutting-edge research in Maritime Engineering and strong engagement of eminent industry-based lecturers from world leading firms. A number of industry-based applications and case-study examples will be introduced to complement the lectures.
Topics include:
- Design Process;
- Environmental loads and design values;
- Planning;
- Fenders;
- Deck and piles;
- Wharves and jetties;
- Geotechnical issues;
- Breakwater design;
- Construction process.
- Dredging Engineering12.5 pts
Dredging is an excavation activity carried out underwater for keeping waterways navigable, beach nourishment and land reclamation. The subject examines Dredging Engineering Fundamentals such as dredging techniques, disposal of dredge material, basic dredge laws, sediment re-suspension and environment aspects. It provides a multi-disciplinary overview of problems by combining cutting-edge research in Maritime and Coastal Engineering and strong engagement of eminent industry-based lecturers from major Australian Port Authorities. A number of industry-based applications and case-study examples will be introduced to complement the lectures. The subject will provide students with a solid grounding in the technologies, concepts, methods & hydrodynamic theories used in the planning, design & execution of dredging projects.
Topics include:
- Types and selection of dredgers;
- Fluid mechanics of dredging;
- Geotechnical issues;
- Survey control;
- Maintenance dredging;
- Coastal and river morphology and sediment transport;
- Environmental studies;
- Hydrodynamic modelling;
- Dredging contracts.
- Port Access and Navigation12.5 pts
The subject examines the management ship traffic in a Port/Harbour. The subject relies on a synergetic approach combining cutting-edge research in Maritime Engineering and strong engagement of a former ship Captain and Harbour Master. A number of industry-based applications and case-study examples will be introduced to complement the lectures.
Topics include:
- Wave theory and marine forecasting;
- Vessel types and handling;
- Navigational aids;
- Underkeel clearance;
- Channel design;
- Port safety;
- Port Organization.
- Port and Harbour Engineering12.5 pts
The subject examines Port/Harbour Planning & Design Fundamentals. It provides a multi-disciplinary overview of problems and issues relevant for port and harbour engineering. The subject relies on a synergetic approach combining cutting-edge research in Maritime Engineering and strong engagement of eminent industry-based lecturers from world leading firms. A number of industry-based applications and case-study examples will be introduced to complement the lectures. The subject will provide students with a solid grounding in the technologies, concepts, methods & hydrodynamic theories used in the planning, design & construction of harbour facilities.
Topics include:
- The business of ports
- Structural design of marine infrastructure
- Port design
- Ships, pilotage and navigation, berthing and mooring
- Harbour hydrodynamics
- Hydrographic surveying
- Corrosion protection
- Civil works at ports.
- Sustainable Water Resources Systems12.5 pts
AIMS
This subject aims to analyse the key concepts underpinning the sustainable use of water within the context of integrated river basin management. Lectures draw on extensive experience in water and river basin management, particularly in Australia and China including guest lecturers from industry practitioners. The subject focuses on the analysis of complex water resource systems that involve multiple sources of water supply and multiple water uses including agriculture, urban, industrial, recreation and the environment. The subject builds on students’ knowledge of sustainability, economics and resource management.
While the principles of resource management are learnt in the context of water and river basins, they can be applied in a range of natural resource management scenarios. Students contemplating a career in any aspect of natural resource management will find this subject of value.
INDICATIVE CONTENT
Topics include:
- Water resource governance and planning
- Water supply
- Wastewater and drainage
- Integrated water resources management - river catchments and basins
- Environmental water demands
- Water resource economics
- Principles of water resource modelling: optimisation and simulation
- Various systems of allocating water between multiple supplies and demands
- Water accounting in time and space
- The balance between economic and environmental uses of water
- Water information services
- River basin management
- Fishways and river restoration.
Core
- Engineering Risk Analysis12.5 pts
AIMS
This subject will focus on how risk analysis and management principles and techniques can be applied to engineering projects. The subject introduces a range of risk analysis techniques, which are put in the context of engineering projects and analysed using the framework of the risk standard (AS/NZS ISO 31000:2009). Risk is a fundamental concept that is applied to every engineering project, whether it is ascertaining the risk of health impacts of water treatment processes, prevention of loss of life by flood mitigation projects, or catastrophic losses caused by the failure of structure in earthquakes or storms.
The subject is of particular relevance to students wishing to establish a career in Engineering management, but is also of relevance to a range of engineering design disciplines where design for the total life cycle of the product or infrastructure should be considered.INDICATIVE CONTENT
Topics covered include: an introduction to the history of engineering failures; the forms of risk and risk identification; project risk analysis; the sociological implications of acceptable risk; approaches to risk management, monitoring for compliance, risk perception and design implications.
- Construction Engineering12.5 pts
AIMS
This subject involves students learning the integrated process between design and construction by developing a proposal for a design & build project. An objective of the project is to help students explore the close relationship between design, constructability and construction. Students will develop a simplified design for an infrastructure project that includes a range of civil works such as earthworks, foundations, drainage, on-site concrete construction and cranage, and then propose solutions for construction that may require iteration of the design. The proposed solution would also address OH&S, environmental, and social sustainability issues inherent in areas such waste minimisation, noise and dust control in an project environmental maagement plan.
Selective
- Integrated Design - Infrastructure12.5 pts
AIMS
This subject involves a major design project that concentrates on preparing a design proposal for a larger spatial scale infrastructure system such as a suburban precinct, a transport system for a small city, or a precinct level water and renewable energy supply system. The preparation of a feasibility study or conceptual design report will be the key deliverable for this subject. Students would work in small teams and receive guidance from experienced engineers in preparing the infrastructure design proposal, which would concentrate on scoping a design to meet societal needs.
- Integrated Design - Civil12.5 pts
AIMS
This subject involves a major design project that concentrates on conducting a more detailed design of a piece of civil infrastructure such as railway station, airport, school, sports stadium, shopping centre, etc. The design would have scope for structural solutions, site works, innovative energy and water supplies, etc., and would be based on a broad conceptual design proposal that has been given to the design team. The design proposal will be presented at a functional level where the broad specifications of the design and how it might be constructed are generated and evaluated, rather than detailed specifications required for construction.
Research
- IE Research Project 1 Part 112.5 pts
AIMS
This subject provides the capstone experience for students in Infrastructure Engineering. Students will combine their expertise in interdisciplinary groups or as individuals to address real-world problems, typically in contact with industry.
Project topics will be advertised well in advance of commencement of the subject so that students can make an informed choice of topic and enrol early. Students must register their topic, group and supervisor before the subject commences.Students with an average score of H1 in the previous 100 points of study and an interest in a PhD have the opportunity to undertake an individual research project.
Notes
Note 1: CVEN90064 IE Research Project 1 Part 1 and CVEN90065 IE Research Project 1 Part 2 must be taken in 2 consecutive semesters. Students may commence in either Semester 1 or Semester 2 and continue their enrolment in the consecutive semester.
Note 2: Students wishing to directly incorporate work done during a non-teaching period must qualify for doing an individual project and have the agreement of a project supervisor and subject coordinator. During the non-teaching period the student must maintain a journal, and review the online lectures, but all assessment will occur at the regular times during the teaching semester.
Note 3: Students and their supervisors must adhere to the University Code of Conduct for research, which may include obtaining human or animal research ethics approval.
Note 4: Students working in University laboratories must comply with OH&S requirements and may be required to undertake additional training such as Workshop Tools Training before access the labs.
Note 5: Students are advised to enrol in the subject at the earliest opportunity to ensure ease of communication prior to the start of semester.
INDICATIVE CONTENT
The first half semester addresses research training and comprises online lectures and tutorials with group homework on topics such as project development, literature review, methodology development, skill development, critical thinking, project documentation, reflective writing, and scientific writing. Students will practise these skills throughout their project topics with supervisors providing feedback on the results.
Students then continue the project within their groups and with regular progress meetings with their supervisor for the remainder of the year. The project culminates with students presenting their project and findings on a poster at a student expo, as an oral presentation, and also in written form in the style of a conference paper.
This subject has been integrated with the Skills Towards Employment Program (STEP) and contains activities that can assist in the completion of the Engineering Practice Hurdle (EPH).Choice of Research Subject for the Master of Engineering
CVEN90047 is a semester long capstone research project taken over one semester. It is less suited to research projects that are dependent on methodologies requiring experiments that take longer than 6 weeks to complete, field work, and problems involving research on humans (for example surveys). It is more suited to methodologies involved computer simulations, analysis of pre-existing data, theoretical studies and shorter experimental programs.
CVEN90064/65 IE Research Project 1 Part 1 and Part 2 have the same assessment and learning outcomes at CVEN90047 but are taken over two consecutive semesters. Students may commence in either Semester 1 or Semester 2 and continue their enrolment in the consecutive semester. Because of the extended length and the possibility of work in the break between semesters students wanting to pursue a project that requires extra duration due to logistical issues should enrol in CVEN90064/65
- IE Research Project 1 Part 212.5 pts
Refer to CVEN90064 IE Research Project 1 Part 1 for details
- IE Research Project 225 pts
AIMS
This subject provides the capstone experience for students in Infrastructure Engineering. Students will combine their expertise in interdisciplinary groups or as individuals to address real-world problems, typically in contact with industry.
Project topics will be advertised well in advance of commencement of the subject so that students can make an informed choice of topic and enrol early. Students must register their topic, group and supervisor before the subject commences.
Students with an average score of H1 in the previous 100 points of study and an interest in a PhD have the opportunity to undertake an individual research project.
INDICATIVE CONTENT
The first half of semester addresses research training and comprises online lectures and tutorials with group homework on topics such as project development, literature review, methodology development, skill development, critical thinking, project documentation, reflective writing, and scientific writing. Students will practise these skills throughout their project topics with supervisors providing feedback on the results.
Students then continue the project within their groups and with regular progress meetings with their supervisor for the remainder of the year. The project culminates with students presenting their project and findings on a poster at a student expo, an oral presentation at a student conference, and also in written form in the style of a conference paper.
This subject has been integrated with the Skills Towards Employment Program (STEP) and contains activities that can assist in the completion of the Engineering Practice Hurdle (EPH).
Notes
Note 1: Students wishing to directly incorporate work done during a non-teaching period must qualify for doing an individual project and have the agreement of a project supervisor and subject coordinator. During the non-teaching period the student must maintain a journal, and review the online research techniques lectures, but all assessment will occur at the regular times during the teaching semester.
Note 2: Students and their supervisors must adhere to the University Code of Conduct for research, which may include obtaining human or animal research ethics approval.
Note 3: Students working in University laboratories must comply with OH&S requirements and may be required to undertake additional training such as Workshop Tools Training before access the labs.
Note 4: Students are advised to enrol in the subject at the earliest opportunity to ensure ease of communication prior to the start of semester.
Choice of Research Subject for the Master of Engineering
CVEN90047 is a semester long capstone research project taken over one semester. It is less suited to research projects that are dependent on methodologies requiring experiments that take longer than 6 weeks to complete, field work, and problems involving research on humans (for example surveys). It is more suited to methodologies involved computer simulations, analysis of pre-existing data, theoretical studies and shorter experimental programs.
CVEN90064/65 IE Research Project 1 Part 1 and Part 2 have the same assessment and learning outcomes at CVEN90047 but are taken over two consecutive semesters. Students may commence in either Semester 1 or Semester 2 and continue their enrolment in the consecutive semester. Because of the extended length and the possibility of work in the break between semesters students wanting to pursue a project that requires extra duration due to logistical issues should enrol in CVEN90064/65
Elective
- Concrete Design and Technology12.5 pts
AIMS
This subject introduces the students to advanced modelling techniques for concrete structures, and to the design and analysis of pre-stressed concrete structures with applications to both buildings and bridges. It builds on knowledge from CVEN90049 Structural Theory and Design 2, in particular the section on the fundamental behaviour of reinforced concrete structural elements when subjected to flexure, axial load and shear. Students will be introduced to strut-and-tie modelling which is used in the analysis and design of complex regions in concrete elements where simple flexural behaviour is disrupted, and also to deformation modelling for reinforced concrete elements which highlights the importance of ductility in these elements. This subject will also introduce advanced concrete technology with discussion of high strength concrete, deterioration mechanisms and the design for durable concrete structures. Students who complete this specialist subject are likely to find employment in design consultancy or concrete construction companies and work under the supervision of a senior engineer.
INDICATIVE CONTENT
Partially prestressed concrete beams: Properties of prestressing steel and types of prestressing systems; Sectional behaviour at service load level, equivalent load concept and load balancing; Creep and shrinkage in concrete; Estimation of prestress losses, deflection and amount of cracking; Indeterminate structures; Anchorages; Applications to building and bridge construction; Applications to precast concrete structures; Deformation modelling; Strut-and-tie modelling; High strength concrete; Design against physical and chemical attack of concrete structures.
- Earthquake Resistant Design of Buildings12.5 pts
AIMS
This subject introduces the fundamental concepts and practice of earthquake resistant design of buildings from an international perspective, incorporating consideration of design in regions of low to moderate seismicity such as Australia and in regions of high seismicity. The design of economically and environmentally feasible structures that can successfully withstand the forces and displacements generated by severe ground motions is a challenge demanding the best in structural engineering art and science. This subject builds on knowledge of Risk Analysis, Engineering Mathematics, Dynamics, and Structural Theory and Design to allow candidates to work as a supervised graduate engineer in this specialised area of practice.
INDICATIVE CONTENT
Topics covered include plate tectonics and seismicity, structural response to earthquake ground motions, design philosophy and design applications to buildings, assessment and retrofitting of existing buildings, and performance of non-structural components and building contents.
- Structural Dynamics and Modelling12.5 pts
AIMS
This subject introduces students to the fundamental concepts of structural dynamics and finite element modelling and teaches students the skills of undertaking structural analyses which involve dynamic (or transient) actions in a practical engineering context. At the conclusion of this subject students should be able to undertake dynamic analyses by hand calculations (that can be enhanced by the use of EXCEL spreadsheets) and effectively employ a commercial computational package (e.g. Strand 7) for more complex analyses. Emphasis is on the ability to undertake independent checks of results generated by the computer. Improved proficiencies in structural dynamics and modelling will result in more economical design of structures and a more sustainable built environment. This subject builds on students’ fundamental knowledge of engineering mathematics, mechanics and structural analysis. For students considering a career in structural design for earthquake resistant structures this is an important subject to prepare for professional practice as a graduate under the supervision of a chartered engineer.
INDICATIVE CONTENT
Topics covered include: introduction to finite element formulations for in-plane (membrane) stress analysis, use of finite element modelling packages; the response analyses of single-degree-of-freedom systems, discrete multi-degree-of-freedom systems and distributed mass (continuous) systems in conditions of natural vibrations and forced excitations; numerical time-step integration techniques; excitation simulation techniques, simultaneous equation solution and reduction techniques; frequency domain analyses and processing of time-series data. Skills acquired from the various topics outlined above will be integrated and applied to a number of case studies.
- High Rise Structures12.5 pts
AIMS
This subject introduces students to the special requirements necessary for the successful design of high rise buildings. Elements of high rise building design considered in the subject are structural floor, framing and foundation systems, wind loading including wind tunnel testing and earthquake loading, analysis techniques including computer-aided analysis, vertical movements and second order effects, facade design, construction methods, sustainability concepts and a review of case study buildings.
The subject builds on fundamental structural engineering knowledge and when learnt together with other structural engineering electives will provide students who successfully complete the subjects a well-rounded knowledge of a range of structural engineering design skills. Students who complete this subject may find work in a structural engineering consultancy or as a site engineer and work under the supervision of a chartered professional engineer on high rise building designs or design variations.
INDICATIVE CONTENT
Introduction to high-rise design; introduction to finite element analysis; loads and design criteria for tall buildings; gravity load resisting; structural systems; gravity loads; lateral load resisting structural system; SpaceGass modelling; wind loading and analysis; earthquake induced loading; distribution of lateral loads to structural elements; coupled core systems and outriggers; theoretical treatment for column beam frames; architectural aspects and sustainability concepts; extreme loading effects; foundations of tall buildings; and, construction methods. Skills acquired from the above topics will be integrated and applied to the assignment which consists of a detailed analysis of a typical high rise building.
- Extreme Loading of Structures12.5 pts
AIMS
This subject is aimed at teaching the scientific principles associated with extreme events including that of earthquakes, impact, blast and cyclonic wind and their effects on a structure. Students will also be trained to make effective use of state-of-the-art techniques in quantifying the effects of the design actions in order that suitable level of protection can be incorporated into the structure to counter an extreme event. At the conclusion of this subject students should be capable of modelling a variety of extreme loadings by employing advanced techniques. Students will also be able to apply the modelling methodologies to fulfil performance based design objectives. Improved proficiencies in countering extreme loading in the design of structures will achieve better economy and a more sustainable built environment. This subject builds on students’ fundamental knowledge of engineering mathematics, mechanics and structural analysis. With frequency of extreme events increasing due to climate change, increased mass and speed of vehicles and terrorism, this subject provides graduates with specialist knowledge to work in the field of hazard reduction or avoidance under the guidance of a chartered engineer.
INDICATIVE CONTENT
Topics covered include Rayleigh Method for developing a simplified model of a structural element, hand calculation techniques for analysing the impact action of a solid object based on linear elastic and elasto-plastic behaviour of the structure, considerations for the conditions of contact and anomalies associated with contributions by the higher modes. Another major topic to be covered is the capacity spectrum method involving linear, or non-linear, static analysis for the assessment of a building structure subject to seismic actions. Other topics include the analysis of blast actions by hand calculations and phenomena associated with the aerodynamic actions of wind.
- Geotechnical Applications12.5 pts
AIMS
This is a geotechnical engineering elective subject in which student will be introduced to various geotechnical engineering applications topics, including the design of shallow and deep foundations, common issues in foundation construction, site characterization and rock slope assessment, tunneling and earth dam designs and numerical Modelling in Geotechnics. This practically oriented elective subject builds on the fundamental material learned earlier in ENEN20002 Earth Processes for Engineering and CVEN30010 System Modelling and Design, and fully integrates with the knowledge gained from the two core subjects CVEN90044 Engineering Site Characterisation and CVEN90050 Geotechnical Engineering. This subject is of particular interest to students intending to establish a career in geotechnical engineering; it is also relevant to a range of engineering disciplines in which a good knowledge of geotechnical engineering offers an advantage.
INDICATIVE CONTENT
Shallow foundations - bearing capacity and settlement; Piled foundations - types, function, bearing capacity and settlement; Site characterization – Planning and implementation of a site investigation, Rock slope assessment – Apply the theories of rock slope engineering on actual problems, Tunneling- Site investigation and initiation of a tunneling project, Earth dams – key aspects of earth dams analysis and design; numerical Modelling in Geotechnics – Application of numerical techniques in geotechnical engineering practice
- Steel and Composite Structures Design12.5 pts
AIMS
This subject aims to introduce the advanced analysis and design of steel and concrete composite structural members used in multi-storey buildings, bridges and other infrastructure. Students will develop an understanding of the procedures required for the design of cold-formed steel members, steel structures in fire, composite slabs, composite beams and composite columns according to Australian and international standards. In addition, the subject also introduces the finite element method for the analysis of frame and plate structures as well as simulates structural design exercises provided by senior experienced practicing engineers. These exercises consist of both conceptual and detailed designs which consider constructability, functionality, sustainability as well as compliance with standards to ensure safety and serviceability.
- Freight Systems12.5 pts
AIMS
There is a need for civil engineers to increase their knowledge and skills in freight systems since they are actively involved in the planning, design, construction, maintenance and management of a range of freight infrastructure such as roads, bridges and ports. Civil engineers require expertise in freight systems to reduce the social and environmental costs from freight including safety, noise and emissions. Training in freight systems also provides opportunities for freight networks to become more productive and efficient increasing economic benefits for society.
Freight infrastructure allows the freight system to operate, facilitating vital components of our economy, including production, distribution and trade.
The purpose of the freight system relates to its role in providing a service for the economy. Freight transport is a derived demand; it does not exist for its own sake. The primary demand is for the consumption of goods where there is spatial separation. Goods are generally stored, processed and consumed at different locations. There is a need for goods to move to increase their value for producers, manufacturers and consumers. Freight can be considered as the economy in motion. Goods are transported as part of the economic activities of production, manufacturing and consumption.
INDICATIVE CONTENT
Freight networks provide a service for producers and manufacturers allowing access to markets for the consumption of goods. The benefit of goods being transported relates to their increased value at their trip destination. Reduced transport operation costs leads to lower production and distribution costs that creates opportunities for lower priced goods.
- Building Information Modeling12.5 pts
In the past few years, the Architecture Engineering and Construction (AEC) industry has observed the evolution of simple 2D drafting programs into integrated Building Information Modelling (BIM) based on 3D spatial technologies. In this subject, students will learn how BIM is used to model, store and visualise architectural, structural, and facilities components of an infrastructure in 3D. Students will also learn how adding time and cost information to BIM allows AEC to foster collaboration in designing infrastructures, minimize the risk of construction errors and optimise the maintenance of them.
The subject is of particular relevance to students wishing to establish a career in civil engineering, property management, surveying, spatial information and urban planning but is also relevant to a range of disciplines where 3D building information should be considered.
- Environmental Management ISO 1400012.5 pts
AIMS
Environmental Management ISO 14000 aims to provide students with the skills and knowledge to apply and help develop environmental management systems. The subject builds on the student’s knowledge of risk management, such as that gained in CVEN30008 Risk Analysis, and develops their ability to identify, assess and manage environmental risk that arises from the construction and operation of manufacturing or infrastructure facilities. It also builds on knowledge about sustainability such as is learnt in the subject CVEN90043 Sustainable Infrastructure Engineering, and other management systems such as those learnt in CVEN90045 Engineering Project Implementation.
At the conclusion of the subject, it is expected that students should be able to work under supervision in a capacity where they are responsible for the maintenance of an existing environmental management system, or assist in developing a new system. They should also be in a position to conduct simple internal audits and assist in more complex internal audits. The subject does not provide students with sufficient practice and skills to immediately become an accredited auditor in Australia.
INDICATIVE CONTENT
Environmental Management ISO 14000 will cover the following related areas of study: the history of EMS from Demming Wheel to ISO 14000 series; the elements of an EMS; systems audit and review and gap analysis; legal requirements, due diligence document control, liability and ISO 9000 review; regulation and accreditation; community consultation; emerging issues in environmental management.
- Solid Wastes to Sustainable Resources12.5 pts
AIMS
In this subject students will learn about the fundamentals of the solid waste stream in modern society. Emphasis will be placed on the life cycle aspects of waste and the prospect of minimizing waste and maximizing the economic value of waste streams. Interaction between solid wastes and liquid and gaseous waste streams will also be considered. The subject builds on knowledge from subjects such as CVEN90043 Sustainable Infrastructure Engineering where general principles of sustainability are discussed. Student knowledge of systems and material cycles, learnt in subjects such as ENEN90031 Quantitative Environmental Modelling and CVEN30010 Systems Modelling and Design or their equivalent in other subjects forms the basic grounding for the subject. The subject is of particular relevance to students wishing to establish a career in waste management, but is also relevant to a range of engineering design disciplines where design for the total life cycle of the product or infrastructure should be considered.
INDICATIVE CONTENT
Regulatory aspects of waste management, sustainability programs in government and private sector, life cycle assessment, organic waste treatment and management, inorganic waste treatment and management, landfill hydrology and design, cleaner production strategies, hazardous waste management, collection and transport logistics.
- Energy Efficiency Technology12.5 pts
AIMS
This subject explores the scope and methods for improving energy efficiency across a range of sectors. Improving energy efficiency is one of the key responses to increasingly scarce natural resources and problems caused by pollutants arising from energy production and use. A range of energy supply and usage scenarios will be considered including transport, manufacturing, commercial and domestic sectors. Collection of information by auditing and then using this information for planning, demand management and impact assessment will be investigated.
Knowledge gained in this subject will allow graduates to practice in the area of energy efficiency. This subject draws on students’ fundamental understanding of engineering efficiency, as well as their ability to use mathematics and statistics to analyse data to inform innovative solutions. The subject complements other subjects offered in the energy theme of the Department such as Energy for Sustainable Development and Sustainable Infrastructure Engineering.
INDICATIVE CONTENT
Areas of study include: potential for improvements in energy efficiency in petrol and diesel vehicles; energy efficiency technologies for the manufacturing, commercial and domestic sectors; demand side management; integrated resource planning; energy auditing; and economic and environmental impacts.
These are applied to the following thematic areas;
- Introduction: fundamentals, energy conversion, supply, distribution and utilisation of energy, Indices, indicators and measurements
- Advanced energy systems
- Energy audits
- Manufacturing sector
- Commercial sector (office & retail)
- Residential sector
- Transport sector
- Life cycle energy analysis
- Developing countries & remote areas
- Energy policy and planning
- Sustainable Buildings12.5 pts
AIMS
This subject provides a multi-disciplinary overview of the design of sustainable buildings and considers the design from an architectural, services engineering, facade engineering, environmental engineering and structural engineering, tenants and owners perspective. A number of industry based case study examples will be introduced to complement the lectures.
This subject uses a project based learning project where students work in teams to design a new or refurbished commercial building to improve the environmental and social performance of the building. Students learn to apply sustainability-rating tools used in industry to their solutions.
Students in the subject come from different disciplinary backgrounds, principally engineering and architecture, and are expected to share their knowledge and learn from each other to successfully complete the project work. This stands them in good stead for entering professional practice in the area of sustainability.
INDICATIVE CONTENT
Topics include: ecological sustainable design, life cycle analysis, planning for sustainable buildings and cities, regulatory environment, barriers to green buildings, green building rating tools, material selection, embodied energy, operating energy, indoor environmental quality (noise, light and air), facade systems, ventilation systems, transportation, water treatment systems, water efficiency, building economics, and staff productivity. These will be covered in the following thematic areas:
- Sustainable Cities
- Sustainable Precincts
- Building Envelope
- Building services - Heating, Ventilation and Air Conditioning
- Building services - Energy
- Building Services - water
- Existing Buildings
- Green Building Rating Tools
- ESD Drivers and Barriers
- ESD Economics
- the process of a green building - 60L CH2
- Business Perspective
- Case Studies.
- Energy for Sustainable Development12.5 pts
AIMS
This subject provides understanding of the principles of development and sustainability in the context of renewable and non-renewable energy sources. Social, environmental and financial implications of technologies to de-carbonise emissions and technologies that can offer a future non-carbon energy supply are discussed.
This subject uses project based learning where students work in teams to investigate the appropriateness of a selected energy source or a selected technology for a particular country, region or a location. Students learn to apply the principles of sustainability and development.
Knowledge gained in this subject will allow graduates to practice in the area of energy policy and planning. The subject complements other subjects offered in the energy theme of the Department such as Solar Energy, Energy Efficiency Technology and Sustainable Infrastructure Engineering.
INDICATIVE CONTENT
- Introduction: What does 'sustainable' mean? What is development? A model for sustainable development
- Consumption (needs versus wants), Global perspectives (inequality and resource distribution)
- Role of energy in development
- Requirements for an sustainable energy supply
- Carbon versus non-carbon energy supply - overview (resources, usage)
- Problems with past patterns of energy use
- Energy efficiency (potential and limits)
- Energy Policy
- Transport futures and peak oil (resources)
- Carbon capture and storage
- Nuclear fission and fusion
- Renewable energy technologies - large and small
- Discussion Forum: Reality of Sustainability.
- Water and Waste Water Management12.5 pts
AIMS
In this subject students will learn about the fundamentals of water quality and the associated standards for use as potable water, recycled water or discharge into the environment in a sustainable manner. The subject will include the identification of risks and measures to control those risks and various treatment processes including physical, chemical and microbiological treatment of water and wastewater. The concept of integrated water management will be introduced and reinforced in the group based project work throughout the semester. Students will learn about the systems for water reclamation and reuse. This subject builds on a range of student’s general knowledge of water systems engineering that is developed in subjects like Systems Modelling and Design and builds on general knowledge of chemistry and biology. It is also assumed that students have developed skills on identifying and sourcing information, and can effectively work as a team to solve larger problems.
Graduates from this subject may apply the skills developed in the water supply, waste water treatment, or water sensitive urban design areas.
INDICATIVE CONTENT
This subject covers theoretical and practical management aspects of sustainable water supply and treatment, wastewater treatment and reuse. Specific topics include:
- Integrated water management
- Risk identification and management for water services
- Water quality guidelines, regulations and performance criteria for treatment plant design
- Water treatment processes and waste disposal
- Wastewater treatment - physical, chemical and biological treatment technologies
- Systems for water reclamation and reuse.
The students will produce a conceptual design of a water and wastewater treatment system for a small town.
- Groundwater Hydrology12.5 pts
AIMS
This subject covers theoretical and practical aspects of groundwater flow, and groundwater contaminant transport. The subject includes the field methods to characterise aquifers, the modelling of groundwater flow, and transport of, pollutants through porous media and reactions. The subject takes students fundamental knowledge of advanced differential calculus and flow processes and applies them to movement of pollutants in groundwater systems. Techniques learnt in this course may be applied in capstone design and research projects.
Concepts and techniques learnt in the subject are directly applicable to contemporary industry issues such contaminant movement through soils from poor historical industrial practice, the design and performance prediction of containment structures such as sanitary landfills or carbon dioxide geo-sequestration projects. The growth of manipulation of geological strata for coal seam gas extraction is another burgeoning area of industrial application of the learning of this subject.
INDICATIVE CONTENT
Specific topics include:
- Groundwater flow in saturated aquifer systems
- Characterisation of acquifer systems using various hydraulic tests
- Numerical solution of groundwater flow
- Groundwater flow in the vadose zone
- Characterisation of unconfined aquifer systems
- Mass transport in saturated media
- Transformation, retardation and attenuation of solutes
- Organic/inorganic compounds in groundwater
- Nonaqueous-phase liquids in groundwater
- Introduction to site remediation.
- Solar Energy12.5 pts
AIMS
This subject provides the application of principles of solar energy engineering. A number of solar technologies and applications methods are investigated.
This subject uses a project based learning where students work in teams to design a solar system for a particular application considering environmental, social and financial constraints. Students learn to apply the principles of solar energy and design.
Knowledge gained in this subject will allow graduates to practice in the area of renewable energy industry. The subject complements other subjects offered in the energy theme of the Department such as Energy for Sustainable Development and Sustainable Infrastructure Engineering.
INDICATIVE CONTENT
- Introduction to Solar Energy in the energy economy; Fundamental heat & mass transfer; Radiation properties of materials; and selective surfaces
- Solar Geometry and solar angles; atmospheric effects and radiation prediction; and Solar radiation measurement
- Flat plate collectors design and performance characteristic
- Concentrating collectors design and performance characteristic; Evacuated tube collectors
- Solar System design methods
- Fundamentals of photovoltaic systems
- Solar process heating
- Solar drying, Solar cookers, Green houses and Solar stills
- Solar water pumping; Solar refrigeration
- Built environment applications passive and active systems
- Solar hot water and solar heat pump systems.
- Environmental Applied Hydrology12.5 pts
AIMS
In this subject students will learn to analyse hydrologic data, to build computer models of catchments, and apply these to hydrologic analysis and real-world design problems. Quantitative analyses of physical hydrology are introduced and emphasis will be placed on the application of fundamental principles of mathematics and physics to the conceptualisation and analysis of the complex interactions that are the hallmark of earth systems. The subject builds on knowledge from ENEN20002 Earth Processes for Engineering where climate and water cycles are studied. It also complements knowledge of modelling and analysis from subjects such as ENEN90031 Quantitative Environmental Modelling and ENEN90028 Monitoring Environmental Impacts. The subject is of particular relevance to students wishing to establish a career in the catchment management or water resources fields, but is also relevant to a range of engineering disciplines where the water cycle should be considered.
INDICATIVE CONTENT
Topics covered include a range of engineering hydrology techniques, precipitation, evapotranspiration, runoff processes, flood hydrology, unsaturated zone, interaction between surface and subsurface water and hydrological modelling.
- International River Basin Management12.5 pts
AIMS
River basins, where human civilisation comes from, are challenged by increasing population pressures, rapid urbanization and climate change impact. A river basin is a semi-closed ecological and economic system, representing logical management units of the water cycle, throughout which all decisions and actions have interdependent ecological, social and economic implications. Thus, river basin management needs interdisciplinary knowledge. This subject aims to equip tomorrow’s water managers with the adaptive approach by linking cutting edge knowledge to stress-tested practices in river basin management.
This subject includes of a 5-7 day field trip held in either China or Australia (in 2017 the field trip will be in Australia) and a major group project to tackle a real river basin management challenge completed mostly during a 1 week intensive workshop. Students are responsible for the cost of travel, accommodation and food.
- Project Management Practices12.5 pts
AIMS
In this subject students will learn about how to evaluate the feasibility of a project and then to define, structure and organise the initial planning phase for both construction projects and complex projects (e.g. IT, high technology projects). The interaction between commercial expectations and project management approaches will be considered broadly based on process and systems thinking. The subject builds on and integrates knowledge from CVEN90043 Sustainable Infrastructure Engineering and/or MCEN90010 Finance and Human Resources for Engineers where the fundamentals of economic appraisal is described, the planning approaches detailed in subject CVEN90045 Engineering Project Implementation and the fundamentals of risk management for which detailed approaches are provided in MULT90014 Business Risk Management. The subject is particularly important for students wishing to understand how to structure and scope projects such that they are well planned on the basis of triple bottom line thinking and the project management processes are efficiently structured.
INDICATIVE CONTENT
Techniques considered include the use of logic maps, business cases and system based project management concepts. Details include the development of acquisition strategies, system life-cycle, boundaries, scope management and mechanisms to control of client expectations and assist them to make sound project decisions leading to the sanctioning of a project. Expected value and Monte Carlo techniques are used as tools to refine project decisions based on risk evaluation.
Project governance arrangements are considered along with cultural context, resourcing requirements of a project and how this is organised and managed. Specific areas considered include the selection of consultants or contractors, communication processes, industrial relations, occupational health and safety, meetings, delegation and leadership.
- Engineering Contracts and Procurement12.5 pts
AIMS
In this subject students will learn how to structure and work with engineering contracts to deliver and procure engineering outcomes. Students will develop a working knowledge of contract administration and gain an understanding of commercial out workings of engineering. All engineers interface commercially with engineering contracts throughout their careers and thus the application of the subject content is broad. Those seeking to work as a contractor and as a contract administrator will find direct application of this subject’s content.
INDICATIVE CONTENT
Commercial management of engineering projects including the role and responsibilities of corporate managers, market analysis, structuring of procurement options, development of contractual terms and conditions, and the pricing of work.
Estimating and tendering engineering works via work breakdown structures, work method statements, risk identification and tendering principles. Contract administration and project control functions and techniques including time and money negotiations and cash flow management are also covered through the use of detailed case study material.
- Engineering Entrepreneurship12.5 pts
AIMS
The aim of this subject is to examine the nature of entrepreneurial behaviour and its role in both small and large organisations within an engineering context. By developing their own enterprise proposal within small groups, students will learn and demonstrate various processes by which successful new ventures are created.
This subject is available as an elective in many of the Melbourne School of Engineering's Masters programs. It is designed to introduce participants to their potential as technical entrepreneurs.
INDICATIVE CONTENT
Business planning, financial management, sources of finance, creativity, innovation, entrepreneurial behaviour, successful technical entrepreneurs.
- Satellite Positioning Systems12.5 pts
AIMS
In this subject students will learn the theory and applications of Global Navigation Satellite Systems (GNSS), such as the Global Positioning Systems (GPS). The subject focuses on high precision GNSS, their design and fundamental operational characteristics, strengths and weaknesses, error sources and mitigation, measurement and data processing techniques. It is a pre requisite for the subject GEOM90039 Advanced Surveying and Mapping. The subject is of broad relevance to students with an interest in technology or to those specifically wishing to establish a career in engineering, mining or cadastral surveying, but is also relevant to a range of mapping, spatial, land surveying and civil engineering disciplines where the capture and processing of spatial or survey measurements to meet a specific performance specification should be considered.
INDICATIVE CONTENT
High precision GPS surveying, Global Navigation Satellite Systems, GPS measurements, Differential GPS, GPS reference station networks, GPS errors, ellipsoidal heights, geodetic datum, geoid, GPS data processing.
NOTE: An intensive learning period of approximately 3-4 days will be conducted as part of this subject. The exact dates and venue will be confirmed at the start of the subject.
- Water Sensitive Urban Design12.5 pts
There is increasing recognition around the world of the threats facing urban environments and their water resources. In many cities water demand is approaching or exceeding limits of sustainability, leading to increasing interest in alternative water sources, such as stormwater harvesting, wastewater recycling and desalination. At the same time, receiving environments such as urban streams and bays are threatened by pollution and erosion from stormwater runoff, or eutrophication due to discharge of poorly-treated wastewater. There is also increasing recognition of the importance of water in the urban landscape, and of its role in the welfare and health of humans.
The concept of “water sensitive urban design” (WSUD), also known as Integrated Urban Water Management (IUWM) has developed in response to these changes. It aims to better integrate water into the urban landscape, improving the sustainability and liveability of cities (for example through the sustaining of health urban vegetation), while securing adequate resources for growing cities.
This subject reflects the integration inherent in WSUD. The course will teach you about the individual urban water cycle components (water supply, wastewater, stormwater, groundwater), but will primary focus on their interactions and integration, and particularly their interaction with the built and natural environment.
The subject includes a mix of lectures and project-based learning, including a major project (broken up into stages throughout the semester), a full-day excursion and workshops involving leading WSUD experts from public and private industry. The subject will cover:
- An introduction to WSUD (its principles, objectives, context within other urban planning and sustainability policy & practice) in developed and developing countries
- Water in the urban landscape, the urban water cycle and its component characteristics
- Social, environmental and economic impacts of urban water management
- Structural tools and techniques (conceptual design, operation, maintenance)
- Non-structural tools and techniques
- Choice of scales
- Analysis methods (water balance calculations, water end-use analysis)
- Lifecycle cost analysis and multi-criteria evaluation frameworks
- Design tools and software (e.g. MUSIC, Urban Developer, House Water Expert)
- Institutional and implementation issues
- Integration between water and other urban design elements
- Internship25 pts
AIMS
This subject involves students undertaking professional work experience at a Host Organisation’s premises. Students will work under the supervision of both a member of academic staff and an external supervisor at the Host Organisation.
During the period of work experience, students will be introduced to workplace culture and be offered the opportunity to strengthen their employability. Students will undertake seminars covering topics that will include professional standards of behaviour and ethical conduct, working in teams, time management and workplace networking.
- Transport System Modelling12.5 pts
AIMS
In undergraduate subjects, students are exposed to some engineering features of transport and traffic engineering. However, these do not fully provide the requisite knowledge and skills for understanding the modelling and planning aspects of transport system engineering. These competencies are of highest importance for those interested in a career in transport engineering. In this subject, students will be provided with the fundamental concept of four-step modelling in depth, including trip generation/attraction, trip distribution, modal split and traffic assignment. The contemporary topics of transport modelling such as choice modelling, car-ownership and uncertainty modelling in the context of transport infrastructure engineering will also be presented. The subject provides real world examples and assignments. The primary emphasis of the subject is on concepts (rather than mathematical details) and getting students ready for the industry.
- Metocean Engineering12.5 pts
The subject examines in-depth the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions. It also provides an introduction to wave and hydrodynamics modelling as a support for engineering applications. It provides a multi-disciplinary overview of problems by combining cutting-edge research in Maritime and Coastal Engineering and industry applications. The subject will provide students with a solid grounding in wave physics that is essential to evaluate the environmental impact on design and operation of marine structures.
Topics include:
- Linear wave theory;
- Second-order wave theory
- Wave Spectrum;
- Tides;
- Wave Measurements;
- Near-shore processes;
- Wave statistics;
- Hydrodynamics and wave modelling;
- Port Structural Design12.5 pts
The subject examines Port/Harbour infrastructures. It provides an in-depth overview of problems and issues relevant for port and harbour engineering. The subject relies on a synergetic approach combining cutting-edge research in Maritime Engineering and strong engagement of eminent industry-based lecturers from world leading firms. A number of industry-based applications and case-study examples will be introduced to complement the lectures.
Topics include:
- Design Process;
- Environmental loads and design values;
- Planning;
- Fenders;
- Deck and piles;
- Wharves and jetties;
- Geotechnical issues;
- Breakwater design;
- Construction process.
- Dredging Engineering12.5 pts
Dredging is an excavation activity carried out underwater for keeping waterways navigable, beach nourishment and land reclamation. The subject examines Dredging Engineering Fundamentals such as dredging techniques, disposal of dredge material, basic dredge laws, sediment re-suspension and environment aspects. It provides a multi-disciplinary overview of problems by combining cutting-edge research in Maritime and Coastal Engineering and strong engagement of eminent industry-based lecturers from major Australian Port Authorities. A number of industry-based applications and case-study examples will be introduced to complement the lectures. The subject will provide students with a solid grounding in the technologies, concepts, methods & hydrodynamic theories used in the planning, design & execution of dredging projects.
Topics include:
- Types and selection of dredgers;
- Fluid mechanics of dredging;
- Geotechnical issues;
- Survey control;
- Maintenance dredging;
- Coastal and river morphology and sediment transport;
- Environmental studies;
- Hydrodynamic modelling;
- Dredging contracts.
- Port Access and Navigation12.5 pts
The subject examines the management ship traffic in a Port/Harbour. The subject relies on a synergetic approach combining cutting-edge research in Maritime Engineering and strong engagement of a former ship Captain and Harbour Master. A number of industry-based applications and case-study examples will be introduced to complement the lectures.
Topics include:
- Wave theory and marine forecasting;
- Vessel types and handling;
- Navigational aids;
- Underkeel clearance;
- Channel design;
- Port safety;
- Port Organization.
- Port and Harbour Engineering12.5 pts
The subject examines Port/Harbour Planning & Design Fundamentals. It provides a multi-disciplinary overview of problems and issues relevant for port and harbour engineering. The subject relies on a synergetic approach combining cutting-edge research in Maritime Engineering and strong engagement of eminent industry-based lecturers from world leading firms. A number of industry-based applications and case-study examples will be introduced to complement the lectures. The subject will provide students with a solid grounding in the technologies, concepts, methods & hydrodynamic theories used in the planning, design & construction of harbour facilities.
Topics include:
- The business of ports
- Structural design of marine infrastructure
- Port design
- Ships, pilotage and navigation, berthing and mooring
- Harbour hydrodynamics
- Hydrographic surveying
- Corrosion protection
- Civil works at ports.
- Sustainable Water Resources Systems12.5 pts
AIMS
This subject aims to analyse the key concepts underpinning the sustainable use of water within the context of integrated river basin management. Lectures draw on extensive experience in water and river basin management, particularly in Australia and China including guest lecturers from industry practitioners. The subject focuses on the analysis of complex water resource systems that involve multiple sources of water supply and multiple water uses including agriculture, urban, industrial, recreation and the environment. The subject builds on students’ knowledge of sustainability, economics and resource management.
While the principles of resource management are learnt in the context of water and river basins, they can be applied in a range of natural resource management scenarios. Students contemplating a career in any aspect of natural resource management will find this subject of value.
INDICATIVE CONTENT
Topics include:
- Water resource governance and planning
- Water supply
- Wastewater and drainage
- Integrated water resources management - river catchments and basins
- Environmental water demands
- Water resource economics
- Principles of water resource modelling: optimisation and simulation
- Various systems of allocating water between multiple supplies and demands
- Water accounting in time and space
- The balance between economic and environmental uses of water
- Water information services
- River basin management
- Fishways and river restoration.