Major
Electrical Systems
Navigation
What will I study?
Overview
Through this major you’ll develop an understanding of mathematical modelling and abstraction, problem-solving and design skills as a basis for understanding electrical phenomena, and the ability to construct simulations and laboratory experiments.
You’ll learn to apply your knowledge of mathematics and electrical phenomena to solve problems in areas such as telecommunications, monitoring and automation, energy distribution, and digital computing.
Your major structure
You’ll complete this major as part of a Bachelor of Science degree. You can study engineering subjects from your first year with us, and you’ll have plenty of flexibility to explore other interests too.
In your first and second years you’ll complete subjects that are prerequisites for your major, including mathematics, physics and foundational engineering subjects.
In your third year, you will complete 50 points (four subjects) of deep and specialised study in electrical systems.
Throughout your degree you will also take science elective subjects and breadth (non-science) subjects, in addition to your major subjects and prerequisites.
Sample course plan
View some sample course plans to help you select subjects that will meet the requirements for this major.
If you did not achieve a study score of at least 29 in VCE Specialist Mathematics 3/4, you may need to enrol in MAST10005 Calculus 1 in your first semester. If you achieved a study score of at least 36 in VCE Specialist Mathematics 3/4 or equivalent, you can enrol in MAST10021 Calculus 2: Advanced and MAST10022 Linear Algebra: Advanced instead of MAST10006 Calculus 2 and MAST10007 Linear Algebra. If you did not achieve a study score of at least 29 in VCE Units 3/4 Physics, you may need to enrol in PHYC10009: Foundations of Physics in your first semester.
Year 1
100 pts
- Semester 1 50 pts
- Semester 2 50 pts
Year 2
100 pts
- Semester 1 50 pts
- Semester 2 50 pts
science elective
12.5 pts
science elective
12.5 pts
breadth/science elective
12.5 pts
Year 3
100 pts
- Semester 1 50 pts
- Semester 2 50 pts
If you did not achieve a study score of at least 29 in VCE Specialist Mathematics 3/4, you may need to enrol in MAST10005 Calculus 1 in your first semester. If you achieved a study score of at least 36 in VCE Specialist Mathematics 3/4 or equivalent, you can enrol in MAST10021 Calculus 2: Advanced and MAST10022 Linear Algebra: Advanced instead of MAST10006 Calculus 2 and MAST10007 Linear Algebra. If you did not achieve a study score of at least 29 in VCE Units 3/4 Physics, you may need to enrol in PHYC10009: Foundations of Physics in your first semester.
Year 1
100 pts
- Semester 2 50 pts
- Semester 1 50 pts
Year 2
100 pts
- Semester 2 50 pts
- Semester 1 50 pts
Year 3
100 pts
- Semester 2 50 pts
- Semester 1 50 pts
science elective
12.5 pts
science elective
12.5 pts
breadth/science elective
12.5 pts
Explore this major
Explore the subjects you could choose as part of this major.
- 12.5 pts
AIMS
This subject develops a fundamental understanding of linear time-invariant network models for the analysis and design of electrical and electronic systems. Such models arise in the study of systems ranging from large-scale power grids to tiny radio frequency signal amplifiers. This subject is one of four subjects that define the Electrical Systems Major in the Bachelor of Science and it is a core requirement for the Master of Engineering (Electrical). It provides a foundation for various subsequent subjects, including ELEN30013 Electronic System Implementation, ELEN90066 Embedded System Design, and ELEN30012 Signal and Systems.
INDICATIVE CONTENT
Topics include:
- Transient and frequency domain analysis of linear time-invariant (LTI) models – linearity, time-invariance, impulse response and convolution, oscillations and damping, the Laplace transform and transfer functions, frequency response and bode plots, lumped versus distributed parameter transfer functions, poles, zeros, and resonance, stability of circuits, modelling and simulation with simulation tools;
- Electrical network models – one-port elements, impedance functions, two-port elements, dependent sources, matrix representations of two-ports, driving point impedances and network functions, ladder and lattice networks, passive versus active networks, multi-stage modelling and design, and multi-port generalisations;
- Analysis and design of networks involving ideal and non-ideal operational amplifiers with emphasis on the design of active filters and broadband circuits with specific frequency characteristics;
- Circuits and networks for managing voltage and power requirements for common electronic circuits.
These topics will be complemented by tutorials and workshops designed to develop skills in design and modelling of electronic circuits through software tools and building, testing, and verificaiton of electronic circuits.
- 12.5 pts
AIM
This subject develops the theoretical and practical tools required to understand, construct, validate and apply models of standard electrical and electronic devices. In particular, students will study the theoretical and practical development of models for devices such as resistors, capacitors, inductors, transformers, motors, batteries, diodes, transistors, and transmission lines. In doing so, students will gain exposure to a variety of fundamental fields in physics, including electromagnetism, semiconductor materials and quantum electronics. This material will be complemented by exposure to experiment design and measurement techniques in the laboratory, the application of models from device manufacturers, and the use of electronic circuit simulation software.
INDICATIVE CONTENT
Topics include:
Vector calculus for device modelling, Maxwell’s equations, physics of conductors and insulators, passive device models (including for resistors, capacitors and inductors), lumped and distributed circuit models for wired interconnections (including treatment of signal integrity and termination strategies), semiconductors and quantum electronics, static and dynamic models for p-n junctions diodes and bipolar junction transistors.
- 12.5 pts
AIMS
The aim of this subject is twofold: firstly, to develop an understanding of the fundamental tools and concepts used in the analysis of signals and the analysis and design of linear time-invariant systems path in continuous–time and discrete-time; secondly, to develop an understanding of their application in a broad range of areas, including electrical networks, telecommunications, signal-processing and automatic control.
The subject formally introduces the fundamental mathematical techniques that underpin the analysis and design of electrical networks, telecommunication systems, signal-processing systems and automatic control systems. Such systems lie at the heart of the electrical engineering technologies that underpin modern society. This subject is one of four that define the Electrical System Major in the Bachelor of Science and it is a core requirement in the Master of Engineering (Electrical). It provides the foundation for various subsequent subjects, including ELEN90057 Communication Systems, ELEN90058 Signal Processing and ELEN90055 Control Systems.
INDICATIVE CONTENT
Topics include:
Signals – continuously and discretely indexed signals, important signal types, frequency-domain analysis (Fourier, Laplace and Z transforms), nonlinear transformations and harmonics, sampling;
Systems – viewing differential / difference equations as systems that process signals, the notions of input, output and internal signals, block diagrams (series, parallel and feedback connections), properties of input-output models (causality, delay, stability, gain, shift-invariance, linearity), transient and steady state behaviour;
Linear time-invariant systems – continuous and discrete impulse response; convolution operation, transfer functions and frequency response, time-domain interpretation of stable and unstable poles and zeros, state-space models (construction from high-order ODEs, canonical forms, state transformations and stability), and the discretisation of models for systems of continuously indexed signals.
This material is complemented by exposure to the use of MATLAB for computation and simulation and examples from diverse areas including electrical engineering, biology, population dynamics and economics.
- 12.5 pts
AIMS
This subject provides the foundation knowledge required to understand the operation, assembly and testing of various simple electronic systems that interact with the real world. The aim is to expose students to designing with a range of standard electrical and electronic devices, basic circuit construction methods and electrical measurement techniques to test and verify the function of electronic systems. This subject provides students with hands-on skills to gain basic competencies in design and implementation of simple circuits and those wishing to seek further electronic design experience are recommended to take subjects such as ELEN90062 High Speed Electronics, ELEN90053 Electronic System Design and ELEN90066 Embedded System Design. This subject is one of four subjects that define the Electrical Systems Major in the Bachelor of Science and it is a core requirement for the Master of Engineering (Electrical) and the Master of Engineering (Electrical with Business).
This includes hands-on experience with:
- Operation and selection of a range of most common electrical and electronic devices used in various electronic circuits;
- Common electronic circuit realisations to meet the most commonly required signal processing and conditioning applications;
- Programmable digital circuits and microprocessor programming;
- Circuit design and simulation tools;
- Printed circuit board layout, circuit assembly, and soldering techniques;
- Test and Measurement equipment and methods;
- Managing design issues and requirements.
Students will complete electronic circuit implementation projects in small groups and be required to prepare technical documentation and present project outcomes.
INDICATIVE CONTENT
- Devices such as resistors, capacitors, inductors, switches, transducers, motors, diodes, transistors, op-amps, voltage regulators, comparators, oscillators, timers, A/D and D/A converters, microprocessors and controllers;
- Circuit functions and techniques such as buffering, referencing, signal conditioning, filtering, bridges, detection, waveform generation, and pulse-width modulation;
- Microprocessor programming, the role of assembly and high-level languages, assemblers, compilers and debuggers;
- PCB layout, circuit assembly, and soldering techniques;
- Test and Measurement methods and working with common equipment such as multimeters and oscilloscopes.